首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiratory motion during Magnetic Resonance (MR) acquisition causes strong blurring artifacts in the reconstructed images. These artifacts become more pronounced when used with the fast imaging reconstruction techniques like compressed sensing (CS). Recently, an MR reconstruction technique has been done with the help of compressed sensing (CS), to provide good quality sparse images from the highly under-sampled k-space data. In order to maximize the benefits of CS, it is obvious to use CS with the motion corrected samples. In this paper, we propose a novel CS based motion corrected image reconstruction technique. First, k-space data have been assigned to different respiratory state with the help of frequency domain phase correlation method. Then, multiple sparsity constraints has been used to provide good quality reconstructed cardiac cine images with the highly under-sampled k-space data. The proposed method exploits the multiple sparsity constraints, in combination with demon based registration technique and a novel reconstruction technique to provide the final motion free images. The proposed method is very simple to implement in clinical settings as compared to existing motion corrected methods. The performance of the proposed method is examined using simulated data and clinical data. Results show that this method performs better than the reconstruction of CS based method of cardiac cine images. Different acceleration rates have been used to show the performance of the proposed method.  相似文献   

2.
The advent of short TR gradient-echo imaging has made it possible to acquire cine images of the heart with conventional whole body MRI scanners. In this paper, technical details of the data collection and image reconstruction process for cine MRI using retrospective cardiac gating are presented. Specifically, the following issues are discussed: data sorting and interpolation; time resolution; motion compensation and phase information; the type of steady state sequence including optimal flip angle; respiratory motion and correction; and the potential of 3D imaging.  相似文献   

3.
PurposeTo develop and validate an accelerated free-breathing 3D whole-heart magnetic resonance angiography (MRA) technique using a radial k-space trajectory with compressed sensing and curvelet transform.MethodA 3D radial phyllotaxis trajectory was implemented to traverse the centerline of k-space immediately before the segmented whole-heart MRA data acquisition at each cardiac cycle. The k-space centerlines were used to correct the respiratory-induced heart motion in the acquired MRA data. The corrected MRA data were then reconstructed by a novel compressed sensing algorithm using curvelets as the sparsifying domain. The proposed 3D whole-heart MRA technique (radial CS curvelet) was then prospectively validated against compressed sensing with a conventional wavelet transform (radial CS wavelet) and a standard Cartesian acquisition in terms of scan time and border sharpness.ResultsFifteen patients (females 10, median age 34-year-old) underwent 3D whole-heart MRA imaging using a standard Cartesian trajectory and our proposed radial phyllotaxis trajectory. Scan time for radial phyllotaxis was significantly shorter than Cartesian (4.88 ± 0.86 min. vs. 6.84 ± 1.79 min., P-value = 0.004). Radial CS curvelet border sharpness was slightly lower than Cartesian and, for the majority of vessels, was significantly better than radial CS wavelet (P-value < 0.050).ConclusionThe proposed technique of 3D whole-heart MRA acquisition with a radial CS curvelet has a shorter scan time and slightly lower vessel sharpness compared to the Cartesian acquisition with radial profile ordering, and has slightly better sharpness than radial CS wavelet. Future work on this technique includes additional clinical trials and extending this technique to 3D cine imaging.  相似文献   

4.
Various sparse transform models have been explored for compressed sensing-based dynamic cardiac MRI reconstruction from vastly under-sampled k-space data. Recently emerged low rank tensor model using Tucker decomposition could be viewed as a special form of sparse model, where the core tensor, which is obtained using high-order singular value decomposition, is sparse in the sense that only a few elements have dominantly large magnitude. However, local details tend to be over-smoothed when the entire image is conventionally modeled as a global tensor. Moreover, low rankness is sensitive to motion as spatiotemporal correlation is corrupted by spatial misalignment between temporal frames. To overcome these limitations, this paper presents a novel motion aligned locally low rank tensor (MALLRT) model for dynamic MRI reconstruction. In MALLRT, low rank constraint is enforced on image patch-based local tensors, which correspond to overlapping blocks extracted from the reconstructed high-dimensional image after group-wise inter-frame motion registration. For solving the proposed model, this paper presents an efficient optimization algorithm by using variable splitting and alternating direction method of multipliers (ADMM). MALLRT demonstrated promising performance as validated on one cardiac perfusion MRI dataset and two cardiac cine MRI datasets using retrospective under-sampling with various acceleration factors, as well as one prospectively under-sampled cardiac perfusion MRI dataset. Compared to four state-of-the-art methods, MALLRT achieved substantially better image reconstruction quality in terms of both signal to error ratio (SER) and structural similarity index (SSIM) metrics, and visual perception in preserving spatial details and capturing temporal variations.  相似文献   

5.
6.
Radial sampling has been demonstrated to be potentially useful in cardiac magnetic resonance imaging because it is less susceptible to motion than Cartesian sampling. Nevertheless, its capability of imaging acceleration remains limited by undersampling-induced streaking artifacts. In this study, a self-calibrated reconstruction method was developed to suppress streaking artifacts for highly accelerated parallel radial acquisitions in cardiac magnetic resonance imaging. Two- (2D) and three-dimensional (3D) radial k-space data were collected from a phantom and healthy volunteers. Images reconstructed using the proposed method and the conventional regridding method were compared based on statistical analysis on a four-point scale imaging scoring. It was demonstrated that the proposed method can effectively remove undersampling streaking artifacts and significantly improve image quality (P<.05). With the use of the proposed method, image score (1–4, 1=poor, 2=good, 3=very good, 4=excellent) was improved from 2.14 to 3.34 with the use of an undersampling factor of 4 and from 1.09 to 2.5 with the use of an undersampling factor of 8. Our study demonstrates that the proposed reconstruction method is effective for highly accelerated cardiac imaging applications using parallel radial acquisitions without calibration data.  相似文献   

7.
This paper presents a nonlinear profile order scheme for three-dimensional(3D) hybrid radial acquisition applied to self-gated, free-breathing cardiac cine magnetic resonance imaging(MRI). In self-gated, free-breathing cardiac cine MRI,respiratory and cardiac motions are unpredictable during acquisition, especially for retrospective reconstruction. Therefore,the non-uniformity of the k-space distribution is an issue of great concern during retrospective self-gated reconstruction. A nonlinear profile order with varying azimuthal increments was provided and compared with the existing golden ratio-based profile order. Optimal parameter values for the nonlinear formula were chosen based on simulations. The two profile orders were compared in terms of the k-space distribution and phantom and human image results. An approximately uniform distribution was obtained based on the nonlinear profile order for persons with various heart rates and breathing patterns.The nonlinear profile order provides more stable profile distributions and fewer streaking artifacts in phantom images. In a comparison of human cardiac cine images, the nonlinear profile order provided results comparable to those provided by the golden ratio-based profile order, and the images were suitable for diagnosis. In conclusion, the nonlinear profile order scheme was demonstrated to be insensitive to various motion patterns and more useful for retrospective reconstruction.  相似文献   

8.
PurposeTo develop and validate a new cardiac self-gating algorithm using blind source separation for 2D cine steady-state free precession (SSFP) imaging.MethodsA standard cine SSFP sequence was modified so that the center point of k-space was sampled with each excitation. The center points of k-space were processed by 4 blind source separation methods, and used to detect heartbeats and assign k-space data to appropriate time points in the cardiac cycle. The proposed self-gating technique was prospectively validated in 8 patients against the standard electrocardiogram (ECG)-gating method by comparing the cardiac cycle lengths, image quality metrics, and ventricular volume measurements.ResultsThere was close agreement between the cardiac cycle length using the ECG- and self-gating methods (bias 0.0 bpm, 95% limits of agreement ±2.1 bpm). The image quality metrics were not significantly different between the ECG- and self-gated images. The ventricular volumes, stroke volumes, and mass measured from self-gated images were all comparable with those from ECG-gated images (all biases <5%).ConclusionThe self-gating method yielded comparable cardiac cycle length, image quality, and ventricular measurements compared with standard ECG-gated cine imaging. It may simplify patient preparation, be more robust when there is arrhythmia, and allow cardiac gating at higher field strengths.  相似文献   

9.
高欠采倍数的动态磁共振图像重建具有重要意义,是同时实现高时间分辨率和高空间分辨率动态对比度增强成像的重要环节.本研究提出一种结合黄金角变密度螺旋采样、并行成像和基于同伦l0范数最小化的压缩感知的图像重建的三维动态磁共振成像方法.黄金角变密度螺旋采样轨迹被用来连续获取k空间数据,具有数据采集效率高、对运动不敏感等优点.在重建算法中,将多线圈稀疏约束应用于时间总变分域,使用基于l0范数最小化的非线性重建算法代替传统的l1范数最小化算法,进一步提高了欠采样率.仿真实验和在体实验表明本文所提的方法在保持图像质量的同时,也可以实现较高的空间分辨率和时间分辨率,初步验证了基于同伦l0范数最小化重建在三维动态磁共振成像上的优势和临床价值.  相似文献   

10.
Parallel imaging methods are routinely used to accelerate the image acquisition process in cardiac cine imaging. The addition of a temporal acceleration method, whereby k-space is sampled differently for different time frames, has been shown in prior work to improve image quality as compared to parallel imaging by itself. However, such temporal acceleration strategies prove difficult to combine with retrospectively gated cine imaging. The only currently published method to feature such combination, by Hansen et al. [Magn Reson Med 55 (2006) 85-91] tends to be associated with prohibitively long reconstruction times. The goal of the present work was to develop a retrospectively gated cardiac cine method that features both parallel imaging and temporal acceleration, capable of achieving significant acceleration factors on commonly available hardware and associated with reconstruction times short enough for practical use in a clinical context.Seven cardiac patients and a healthy volunteer were recruited and imaged, with acceleration factors of 3.5 or 4.5, using an eight-channel product cardiac array on a 1.5-T system. The prescribed FOV value proved slightly too small in three patients, and one of the patients had a bigemini condition. Despite these additional challenges, good-quality results were obtained for all slices and all patients, with a reconstruction time of 0.98±0.07 s per frame, or about 20 s for a 20-frame slice, using a single processor on a single PC. As compared to using parallel imaging by itself, the addition of a temporal acceleration strategy provided much resistance to artifacts.  相似文献   

11.
Three-dimensional cine imaging provides a wealth of information about cardiac anatomy and function, but its use in the clinical environment is limited because data acquisition is very time consuming. In this work, a free-breathing 3D whole-heart cine imaging framework was developed using a time-efficient stack of spirals trajectory and accelerated reconstruction. Two suitable view ordering methods are considered with different spacing between k-space readouts in the partition dimension: uniform and tiny golden ratio based. A simulation study suggested the latter did not present any benefits in terms of similarity to the true image. The proposed method was subsequently tested on 10 prospective subjects and compared with conventional multi-slice breath-hold imaging. Image quality was evaluated using objective and subjective scores and ventricular measurements were compared to assess clinical accuracy. Image quality was lower in the proposed technique than in breath-hold images but good agreement was found in clinically relevant ventricular measurements. In addition, the proposed method was fast to acquire, required minimal planning and provided full anatomical coverage with isotropic resolution.  相似文献   

12.
PurposeTo develop and evaluate a free breathing respiratory self-gated isotropic resolution technique for left ventricular (LV) volume measurements.MethodsA 3D radial trajectory with double golden-angle ordering was used for free-running data acquisition during free breathing in 9 healthy volunteers. A respiratory self-gating signal was extracted from the center of k-space and used with the electrocardiogram to bin all data into 3 respiratory and 25 cardiac phases. 3D image volumes were reconstructed and the LV endocardial border was segmented. LV volume measurements and reproducibility from 3D free breathing cine were compared to conventional 2D breath-held cine.ResultsNo difference was found between 3D free breathing cine and 2D breath-held cine with regards to LV ejection fraction, stroke volume, end-systolic volume and end-diastolic volume (P < 0.05 for all). The test-retest differences did not differ between 3D free breathing cine and 2D breath-held cine (P < 0.05 for all).Conclusion3D free breathing cine and conventional 2D breath-held cine showed similar values and test-retest repeatability for LV volumes in healthy volunteers. 3D free breathing cine enabled retrospective sorting and arbitrary angulation of isotropic data, and could correctly measure LV volumes during free breathing acquisition.  相似文献   

13.
李硕  王磊  朱艳春  杨洁  谢耀钦  付楠  王乙  高嵩 《中国物理 B》2016,25(12):128703-128703
Conventional multiple breath-hold two-dimensional(2D) balanced steady-state free precession(SSFP) presents many difficulties in cardiac cine magnetic resonance imaging(MRI). Recently, a self-gated free-breathing three-dimensional(3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of selfgating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed.Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic(ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers.The results demonstrate an excellent correlation(P = 0, R 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac(H = 0, P 0.10) and respiratory(H = 0, P 0.44) motions. The difference between self-gating and externally monitored signals is not significant(two-tailed paired-sample t-test: H = 0, P 0.90).The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors appear in some subjects while these errors are not found in self-gating signals.  相似文献   

14.
PurposeTo present a method that uses a novel free-running self-gated acquisition to achieve isotropic resolution in whole heart 3D Cartesian cardiac CINE MRI.Material and methods3D cardiac CINE MRI using navigator gating results in long acquisition times. Recently, several frameworks based on self-gated non-Cartesian trajectories have been proposed to accelerate this acquisition. However, non-Cartesian reconstructions are computationally expensive due to gridding, particularly in 3D. In this work, we propose a novel highly efficient self-gated Cartesian approach for 3D cardiac CINE MRI. Acquisition is performed using CArtesian trajectory with Spiral PRofile ordering and Tiny golden angle step for eddy current reduction (so called here CASPR-Tiger). Data is acquired continuously under free breathing (retrospective ECG gating, no preparation pulses interruption) for 4–5 min and 4D whole-heart volumes (3D + cardiac phases) with isotropic spatial resolution are reconstructed from all available data using a soft gating technique combined with temporal total variation (TV) constrained iterative SENSE reconstruction.ResultsFor data acquired on eight healthy subjects and three patients, the reconstructed images using the proposed method had good contrast and spatio-temporal variations, correctly recovering diastolic and systolic cardiac phases. Non-significant differences (P > 0.05) were observed in cardiac functional measurements obtained with proposed 3D approach and gold standard 2D multi-slice breath-hold acquisition.ConclusionThe proposed approach enables isotropic 3D whole heart Cartesian cardiac CINE MRI in 4 to 5 min free breathing acquisition.  相似文献   

15.
The design of feasible trajectories to traverse the k-space for sampling in magnetic resonance imaging (MRI) is important while considering ways to reduce the scan time. Over the recent years, non-Cartesian trajectories have been observed to result in benign artifacts and being less sensitive to motion. In this paper, we propose a generalized framework that encompasses projection-based methods to generate feasible non-Cartesian k-space trajectories. This framework allows to construct feasible trajectories from both random or structured initial trajectories, e.g., based on the traveling salesman problem (TSP). We evaluate the performance of the proposed methods by simulating the reconstruction of 128 × 128 and 256 × 256 phantom and brain MRI images in terms of structural similarity (SSIM) index and peak signal-to-noise ratio (PSNR) using compressed sensing techniques. It is observed that the TSP-based trajectories from the proposed projection method with constant acceleration parameterization (CAP) result in better reconstruction compared to the projection method with constant velocity parameterization (CVP) and this for a similar read-out time. Further, random-like trajectories are observed to be better than TSP-based trajectories as they reduce the read-out time while providing better reconstruction quality. A reduction in read-out time by upto 67% is achieved using the proposed projection with permutation (PP) method.  相似文献   

16.
This work describes a segmented radial turbo-spin-echo technique (DW-rTSE) for high-resolution multislice diffusion-weighted imaging and quantitative ADC mapping. Diffusion-weighted images with an in-plane resolution of 700 microm and almost free of bulk motion can be obtained in vivo without cardiac gating. However, eddy currents and pulsatile brain motion cause severe artifacts when strong diffusion weighting is applied. This work explains in detail the artifacts in projection reconstruction (PR) imaging arising from eddy currents and describes an effective eddy current compensation based on the adjustment of gradient timing. Application of the diffusion gradients in all three orthogonal directions is possible without degradation of the images due to eddy current artifacts, allowing studies of the diffusional anisotropy. Finally, a self-navigation approach is proposed to reduce residual nonrigid body motion artifacts. Five healthy volunteers were examined to show the feasibility of this method.  相似文献   

17.
The double inversion recovery (DIR) imaging technique has various applications such as black blood magnetic resonance imaging and gray/white matter imaging. Recent clinical studies show the promise of DIR for high resolution three dimensional (3D) gray matter imaging. One drawback in this case however is the long data acquisition time needed to obtain the fully sampled 3D spatial frequency domain (k-space) data. In this paper, we propose a method to solve this problem using the compressed sensing (CS) algorithm with contourlet transform. The contourlet transform is an effective sparsifying transform especially for images with smooth contours. Therefore, we applied this algorithm to undersampled DIR images and compared with a CS algorithm using wavelet transform by evaluating the reconstruction performance of each algorithm for undersampled k-space data. The results show that the proposed CS algorithm achieves a more accurate reconstruction in terms of the mean structural similarity index and root mean square error than the CS algorithm using wavelet transform.  相似文献   

18.
磁共振成像(MRI)无创无害、对比度多、可以任意剖面成像的特点特别适合用于心脏成像,却因扫描时间长限制了其在临床上的应用.为了解决心脏磁共振电影成像屏气扫描时间过长的问题,该文提出了一种基于同时多层激发的多倍加速心脏磁共振电影成像及其影像重建的方法,该方法将相位调制多层激发(CAIPIRINHA)技术与并行加速(PPA)技术相结合,运用到分段采集心脏电影成像序列中,实现了在相位编码方向和选层方向的四倍加速,并使用改进的SENSE/GRAPPA算法对图像进行重建.分别在水模以及人体上进行了实验,将加速序列图像与不加速序列图像进行对比,结果验证了重建算法的有效性,表明该方法可以在保障图像质量以及准确测量心脏功能的前提下成倍节省扫描时间.  相似文献   

19.
In this paper we describe a three-dimensional (3D) continuous wave (CW) diffuse optical tomography (DOT) system and present 3D volumetric reconstruction studies using this DOT system with simple phantom models that simulate hand joints. The CCD-based DOT system consists of 64×64 source/detector fiber optic channels, which are arranged in four layers, forming a cylindrical fiber optic/tissue interface. Phantom experiments are used to evaluate system performance with respective to axial spatial resolution, optical contrast and target position for detection of osteoarthritis where cartilage is the primary target region of interest. These phantom studies suggest that we are able to quantitatively resolve a 2 mm thick “cartilage” and qualitatively resolve a 1 mm thick “cartilage” using our 3D reconstruction approach. Our results also show that optical contrast of 3:1–7:1 between the “disease cartilage” and normal cartilage can be quantitatively recovered. Finally, the target position along axial direction on image reconstruction is studied. All the images are obtained using our 3D finite-element-based reconstruction algorithm.  相似文献   

20.
Morphological and functional cardiac MRI can potentially benefit greatly from the recent advent of commercial high-field (7 tesla and above) MRI systems. However, conventional hardware configurations at lower field using a body-coil for homogeneous transmission are not available at these field strengths. Sophisticated multiple-transmit-channel systems have been shown to be able to image the human heart at 7 tesla but such systems are currently not widely available. In this paper, we empirically optimize the design of a simple quadrature coil for cardiac imaging at 7 tesla. The size, geometry, and position have been chosen to produce a B1 field with no tissue-induced signal voids within the heart. Standard navigator echoes for gating were adapted for operation at the heart/lung interface, directly along the head–foot direction. Using this setup, conventional and high-resolution cine functional imaging have been successfully performed, as has morphological imaging of the right coronary artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号