首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulse radiolysis of epicatechin in aqueous solution has been done to investigate the reactions of epicatechin derived phenoxy radical (EpO) at neutral pH. EpO was generated by N3 reacting toward EpOH, the rate constant was measured to be 3 × 108 dm3 mol−1 s−1. The biomolecular termination of EpO is rather slow ((2k < × 106 dm3 mol−1 s−1) and results in products exhibiting strong visible absorption around 450 nm. No reactions have been observed for EpO with O2 and O2 in the time scale of pulse radiolysis (0.01 s), suggesting the bimolecular rate constant are less than 104 and 5 × 106 dm3 mol−1 s−1, respectively.  相似文献   

2.
Odashima T  Endoh I  Ishii H 《Talanta》1990,37(12):1163-1168
The equilibria and kinetics of the solvent extraction of gallium(III) from aqueous monochloroacetic acid [HA] media with a benzene solution of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone [PMBP or HL] has been studied at 25 ± 0.1° and an ionic strength of 0.2. The species extracted was found to be GaL3. The value of the acid dissociation constant of PMBP determined spectrophotometrically was 1.17 × 10−4. The values of the partition coefficient of PMBP and the extraction constant of its gallium complex between an aqueous and a benzene phase were found to be 3.72 × 103 and 2.51 × 104, respectively. The rate of extraction was first-order with respect to the concentrations of gallium(III) in the aqueous phase and PMBP in the organic phase, inversely first- and second-order with respect to the hydrogen-ion concentration and zero- and first-order with respect to the concentration of monochloroacetate ions. Two mechanisms operate for this extraction, depending on the pH of the aqueous phase, one where the formation of the first complex, GaL2+, between Ga3+ and L in the region of pH < 1.6 becomes the rate-determining step, and the other where the formation of the first complex between GaA2+ and L in the region of pH 2.0–2.3 is the rate-determining step. The rate constant for the first of these reactions was calculated to be 1.62 × 104l.mole−1.sec−1, but that for the second could not be determined.  相似文献   

3.
Reartes GB  Liberman SJ  Blesa MA 《Talanta》1987,34(12):1039-1042
The acidity constants of benzidine (Bz) in aqueous solutions determined potentiometrically at 25° were Ka1 = (1.11 ± 0.08) × 10−5, Ka2 = (1.45 ± 0.12) × 10−4. The apparent mixed constants in 0.1M sodium nitrate are Ka1 = (5.37 ± 0.28) × 10−6 and Ka2 = (1.14 ± 0.09) × 10−4. The ultraviolet spectra were recorded as a function of pH and analysed with these constants to obtain the absorption spectra of H2Bz2+, HBz+ and Bz; the corresponding wavelengths of maximal absorption are 247, 273 and 278 nm, and molar absorptivities 1.63 × 104, 1.76 × 104 and 2.26 × 104 1.mole−1.cm−1.  相似文献   

4.
The kinetics of the reactions of hydroxyl radicals with aliphatic alcohols in aqueous solution were studied using pulse radiolysis. Based on the optical absorption observed in the UV region, the rate constants for the reaction of hydroxyl radicals with methanol, ethanol, 2-propanol and tert-butyl alcohol were determined to be 9.0×108, 2.2×109, 2.0×109 and 6.2×108 dm3 mol−1 s−1, respectively. The values obtained here by direct observation of the alcohol radicals basically confirm the values which were earlier determined indirectly by competition.  相似文献   

5.
The temperature dependence of the rate constants, for the reactions of hydrated electrons with H atoms, OH radicals and H2O2 has been determined. The reaction with H atoms, studied in the temperature range 20–250°C gives k(20°C) = 2.4 × 1010M-1s1 and the activation energy EA = 14.0 kJ mol-1 (3.3 kcal mol-1). For reaction with OH radicals the corresponding values are, k(20°C) = 3.1 × 1010M-1s-1 and EA = 14.7 kJ mol-1 (3.5 kcal mol-1) determined in the temperature range 5–175°C. For reaction with H2O2 the values are, k(20°C) = 1.2 × 1010M-1s-1 and EA = 15.6 kJ mol-1 (3.7 kcal mol-1) measured from 5–150°C. Thus, the activation energy for all three fast reactions is close to that expected for diffusion controlled reactions. As phosphates were used as buffer system, the rate constant and activation energy for the reaction of hydrated electron with H2PO4- was determined to k(20°C) = 1.5 × 107M-1s-1 and EA = 7.4 kJ mol-1 (1.8 kcal mol-1) in the temperature range 20–200°C.  相似文献   

6.
Steady-state and nanosecond time-resolved studies have been carried out on the fluorescence quenching of excited pyrene by n-doxylstearic methyl esters (n-DSE, N = 5, 10, 12) in an aqueous solution of cationic micelles of hexadecyltrimethylammonium chloride (HTAC, 0.1 M). The aggregation number (N = 114 ± 6) and the rate constants of intramicellar quenching (1.4 × 107, 1.3 × 107 and 1.05 × 107 s−1 for 5-, 10- and 12-DSE respectively) have been determined. The results are discussed in terms of the average location of the luminophore and the quencher molecules in the aggregates, considering previous findings of electron spin echo modulation studies of n-doxylstearic acid spin probes in micellar systems.  相似文献   

7.
Excitation of solutions of Fe(bipy)2(CN)2 by a 266-nm laser pulse produces a hydrated electron and the oxidized complex, Fe(bipy)2 (CN)2+, in the primary photochemical step, in homogeneous aqueous solution as well as in aqueous solutions containing cetyltrimethylammonium bromide (CTAB) or sodium dodecyl sulfate (SDS) micelles. In all cases nascent hydrated electrons react with ground state Fe(bipy)2(CN)2 to form Fe(bipy)2(CN)2, and comparison of the decay constants in the three media (H2O: k = 2.8 × 1010 M−1 s−1; CTAB: k = 2.9 × 1010 M−1 s−1; SDS: k = 5.5 × 109 M−1 s−1), shows that the reaction is essentially unaffected by CTAB micelles but is much slower in SDS solution. Similar micellar effects were found for the back reaction between eaq and Fe(bpy)2(CN)2+. Rate constants for the scavenging of the photogenerated hydrated electrons by methyl viologen (MV2+) cations and NO3 anions were measured in the three systems, and the results indicate that for scavenging by MV2+ the rate constants are decreased in the micelle systems (k in H2O, 8.4 × 1010; CTAB, 3.5 × 1010 and SDS, 1.58 × 1010 M−1 s−1), whereas for NO3 the CTAB micelle decreases while the SDS micelle enhances the scavenging compared to water solution (k in H2O, 8.3 × 109; CTAB, 7 × 108; and SDS, 2.05 × 1010 M−1 s−1). For the comproportionation reaction between Fe(bipy)2(CN)2+ and Fe(bipy)2(CN)2 both micelles reduce the rate (k in H2O, 3.3 × 1010; CTAB, 2.3 × 1010; and SDS, 1.05 × 1010 M−1s−1), but while the reaction of Fe(bipy)2(CN)2+ with MV+ is increased in CTAB compared to water, it is slowed in SDS (k in H2O, 2.4 × 1010; CTAB, 8.9 × 1010; and SDS, 1.8 × 1010 M−1s−1). All effects observed in these microheterogeneous systems can be uniformly interpreted in terms of Coulombic interactions between the actual reactants and the charged surface of the micelles.  相似文献   

8.
Kesari R  Gupta VK 《Talanta》1998,45(6):1097-1102
A sensitive spectrophotometric method based on the evolution of CS2 and colour development by leuco crystal violet is described for the determination of dithiocarbamate fungicides, e.g. thiram, ziram and zineb. Dithiocarbamate fungicides release CS2 on acid hydrolysis. This CS2 is absorbed in ethanolic sodium hydroxide and forms xanthate. The xanthate formed is subsequently treated with potassium iodate and N-chlorosuccinimide, during which free iodine is liberated. Crystal violet dye was formed through selective oxidation of leuco crystal violet by liberated iodine, which has an absorbance maxima at 595 nm. The colour systems obey Beer's law in the range of 0.02–0.20, 0.02–0.24 and 0.04–0.32 ppm for thiram, ziram and zineb respectively. The molar absorptivity of the colour system were found to be 9.6×105, 1.1×106 and 6.8×105±100 l mol−1 cm−1 for thiram, ziram and zineb respectively. The method has been successfully applied to the determination of these dithiocarbamate fungicides in various environmental samples.  相似文献   

9.
Saran L  Cavalheiro E  Neves EA 《Talanta》1995,42(12):2027-2032
The highly neutralized ethylenediaminetetraacetate (EDTA) titrant (95–99% as Y4− anion) precipitates with Ag+ cations to form the Ag4Y species, in aqueous medium, which is well characterized from conductometric titration, thermal analysis and potentiometric titration of the silver content of the solid. The precipitate dissolves in excess Y4− to form a complex, AgY3−. Equilibrium studies at 25°C and ionic strength 0.50 M (NaNO3) have shown from solubility and potentiometric measurements that the formation constant (95% confidence level) β1 = (1.93 ± 0.07) × 105 M−1 and the solubility products are KS0 = [Ag +]4[Y4−] = (9.0 ± 0.4) × 10−18 M5 and KS1 = [Ag +]3[AgY3−] = (1.74 ± 0.08) × 10−12 M4. The presence of Na+, rather than ionic strength, markedly affects the equilibrium; the data at ionic strength 0.10 M are: β1 = (1.19 ± 0.03) × 106 M−1, KS0 = (1.6 ± 0.4) × 10−19 M5 and KS1 = (1.9 ± 0.5) × 10−13 M4; at ionic strength tending to zero; β1 = (1.82 ± 0.05) × 107 M−1, KS0 = (2.6 ± 0.8) × 10−22 M5 and KS1 = (5 ± 1) × 10−15 M4. The intrinsic solubility is 2.03 mM silver (I) in 0.50 M NaNO3. Well-defined potentiometric titration curves can be taken in the range 1–2 mM with the Ag indicator electrode. Thermal analysis revealed from differential scanning calorimetry a sharp exothermic peak at 142°C; thermal gravimetry/differential thermal gravimetry has shown mass loss due to silver formation and a brown residue, a water-soluble polymeric acid (decomposition range 135–157°C), tending to pure silver at 600°C, consistent with the original Ag4Y salt.  相似文献   

10.
The reactions of two triphenyl methane (TPM) dyes—crystal violet (CV+) and malachite green (MG+)—with N3 and OH radicals were studied by pulse radiolytic kinetic spectrophotometry. The rate constants for the reaction of the cationic dyes (D+) with N3 are (9.0±0.6)×109 and (3.0±0.2)×109 dm3 mol−1 s−1 respectively and those for the reaction with OH are obtained as (8.0±0.6)×109 and (1.1±0.1)×109 dm3 mol−1 s−1 respectively. The transient spectra resulting from the oxidation of the dyes were characterized. The time-resolved spectra indicate that the reaction with OH radicals initially generates an adduct which subsequently dissociates to form the radical dication D•2+. The D•2+ species decay by further reaction with the parent dye.  相似文献   

11.
The reactions of hydroxyl radical, hydrogen atom and hydrated electron intermediates of water radiolysis with N-isopropylacrylamide (NIPAAm) were studied by pulse radiolysis in dilute aqueous solutions. OH, H and eaq react with NIPAAm with rate coefficient of (6.9±1.2)×109, (6.6±1)×109, and (1.0±0.2)×1010 mol−1 dm3 s−1. In OH and H radical addition to the double bond mainly -carboxyalkyl type radicals form, (OHCH2CHC(N-i-C3H7)O and CH3CHC(N-i-C3H7)O). In reaction of eaq oxygen atom centered radical anion is produced (CH2CHC(N-i-C3H7)O), the anion undergoes reversible protonation with pKa=8.7. There is also an irreversible protonation on the β-carbon atom that produces the same radical as forms in H atom reaction (CH3CHC(N-i-C3H7)O). The -carboxyalkyl type radicals at low NIPAAm concentration (0.1–1 mmol dm−3) mainly disappear in self-termination reactions, 2kt,m=8.4×108 mol−1 dm3 s−1. At higher concentrations the decay curves reflect the competition of the self-termination and radical addition to monomer (propagation). The termination rate coefficient of oligomer radicals containing a few monomer units is 2kt≈2×108 mol−1 dm3 s1.  相似文献   

12.
Two flow injection analyses (FIA) methods for the determination of diffusion coefficients in a straight single tube FIA system were developed. Based on the analytical solution of the convection-diffusion equation, linear relationships of the logarithmic values of the dispersion coefficient (D) and the half-peak width (W1/2) with the diffusion coefficient (Dm) were obtained. Experiments were designed to verify these methods. For example, for potassium hexacyanoferrate (III) a Dm value of 0.72 × 105 cm2 s−1 was found versus a literature value of 0.76 × 105 cm2 s−1 (error, 5%). For potassium hexacyanoferrate (II) a Dm value of 0.67 × 105 cm2 s−1 was obtained versus a literature value of 0.63 × 105 cm2 s−1 (error, 6%). The diffusion coefficients of some important biomedical compounds, such as dopamine, epinephrine, norepinephrine and ascorbic acid, were then determined. The values of 105 Dm/cm2 s−1 are 0.60 ± 0.03, 0.44 ± 0.02, 0.60 ± 0.01 and 0.68 ± 0.06, respectively.  相似文献   

13.
The one-electron oxidation of Mitomycin C (MMC) as well as the formation of the corresponding peroxyl radicals were investigated by both steady-state and pulse radiolysis. The steady-state MMC-radiolysis by OH-attack followed at both absorption bands showed different yields: at 218 nm Gi (-MMC) = 3.0 and at 364 nm Gi (-MMC) = 3.9, indicating the formation of various not yet identified products, among which ammonia was determined, G(NH3) = 0.81. By means of pulse radiolysis it was established a total κ (OH + MMC) = (5.8 ± 0.2) × 109 dm3 mol−1 s−1. The transient absorption spectrum from the one-electron oxidized MMC showed absorption maxima at 295 nm (ε = 9950 dm3 mol−1 cmt-1), 410 nm (ε = 1450 dm3 mol−1 cm−1) and 505 nm ( ε = 5420 dm3 mol−1 cm−1). At 280–320 and 505 nm and above they exhibit in the first 150 μs a first order decay, κ1 = (0.85 ± 0.1) × 103 s−1, and followed upto ms time range, by a second order decay, 2κ = (1.3 ± 0.3) × 108 dm3 mol-1 s−1. Around 410 nm the kinetics are rather mixed and could not be resolved.

The steady-state MMC-radiolysis in the presence of oxygen featured a proportionality towards the absorbed dose for both MMC-absorption bands, resulting in a Gi (-MMC) = 1.5. Among several products ammonia-yield was determined G(NH3) = 0.52. The formation of MMC-peroxyl radicals was studied by pulse radiolysis, likewise in neutral aqueous solution, but saturated with a gas mixture of 80% N2O and 20% O2. The maxima of the observed transient spectrum are slightly shifted compared to that of the one-electron oxidized MMC-species, namely: 290 nm (ε = 10100 dm3 mol−1 cm−1), 410 nm (ε = 2900 dm3 mol−1 cm−1) and 520 nm (ε = 5500 dm3 mol−1 cm−1). The O2-addition to the MMC-one-electron oxidized transients was found to be at 290 to 410 nm gk(MMC·OH + O2) = 5 × 107 dm3 mol−1 s−1, around 480 nm κ = 1.6 × 108 dm3 mol−1 s−1 and at 510 nm and above, κ = 3 × 108 dm3 mol−1 s−1. The decay kinetics of the MMC-peroxyl radicals were also found to be different at the various absorption bands, but predominantly of first order; at 290–420 nm κ1 = 1.5 × 103 s−1 and at 500 nm and above, κ = 7.0 × 103 s−1.

The presented results are of interest for the radiation behaviour of MMC as well as for its application as an antitumor drug in the combined radiation-chemotherapy of patients.  相似文献   


14.
Using pulse radiolysis and steady state γ-radiolysis in combination with product analysis by HPLC the radiolytic degradation mechanism of 4-chloroanisole (4-ClAn) has been elucidated. Pulse radiolysis experiments show that OH radicals react in neutral aqueous N2O saturated solutions with 4-ClAn by addition to all aromatic ring positions to yield hydroxycyclohexadienyl radicals (OH-adducts), k(OH + 4-ClAn) = 6.5 × 109dm3mol−1s−1. Those OH-adducts formed on ipso positions of the molecule subsequently undergo HCl or CH3OH elimination forming methoxyphenoxyl- and chlorophenoxyl radicals. Their yield corresponds to 20% of the OH-radicals, whereby the distribution is roughly 3:1 in favor of the methoxyphenoxyl radicals, which reflects the stronger ortho-, para-directing activity of the methoxy group. The OH-adducts decay second order, 2k = 1 × 109dm3mol−1s−1. The presence of oxygen leads to its addition on the hydroxycyclohexadienyl radicals, k(OH-adduct + O2) = 3.2 × 108dm3mol−1s−1. In airfree solution the reaction of H-atom with the substrate, k(H + 4-ClAn) = 1.2 × 109dm3mol−1s−1, results in H-adducts which decay in bimolecular reactions, 2k = 8.2 × 108dm3mol−1s−1. The rate constant for the reaction of the solvated electrons has been determined to k(eaq + 4-ClAn) = 2 × 109dm3mol−1s−1. The absorption spectra of H- and OH-adducts were measured in the range of 280–450 nm. The products analysed by HPLC after γ-radiolysis in dependence of dose (100–600 Gy) are given for N2O-, air-, oxygen- and argon saturated neutral aqueous solutions. In conditions favoring the OH radical oxidation 4-chlorophenol, 4-methoxyphenol, 5-chloro-2-methoxyphenol and 2-chloro-5-methoxyphenol were determined as final products. In the presence of Ar, where about equal amounts of OH and eaq are present, additionally anisole could be detected. Under both reaction conditions the amount of identified products is about 20% of decomposed 4-ClAn. The reaction of eaq leads to reductive dechlorination which corresponds quantitatively to the degradation of the substrate. In the presence of air or solutions saturated with pure oxygen predominantly hydroquinone, 4-chlorophenol and muconic acids are formed and the material balance is 50%. The efficient dechlorination (60% of the decomposed 4-ClAn) as well as ring fragmentation products as intermediates en route to complete mineralization in oxygenated solution indicate that high energy radiation is a promising method for degradation of halogenated aromatic compounds in water. Variation of dose rates from 79 Gy min−1 to 266 Gy min−1 did not show any influence on the product distribution.  相似文献   

15.
The collisional quenching of electronically excited germanium atoms, Ge[4p2(1S0)], 2.029 eV above the 4p2(3P0) ground state, has been investigated by time-resolved atomic resonance absorption spectroscopy in the ultraviolet at λ = 274.04 nm [4d(1P10) ← 4p2(1S0)]. In contrast to previous investigations using the ‘single-shot mode’ at high energy, Ge(1S0) has been generated by the repetitive pulsed irradiation of Ge(CH3)4 in the presence of excess helium gas and added gases in a slow flow system, kinetically equivalent to a static system. This technique was originally developed for the study of Ge[4p2(1D2)] which had eluded direct quantitative kinetic study until recently. Absolute second-order rate constants obtained using signal averaging techniques from data capture of total digitised atomic decay profiles are reported for the removal of Ge(1S0) with the following gases (kR in cm3 molecule−1 s−1, 300 K): Xe, 7.1 ± 0.4 × 10−13; N2, 4.7 ± 0.6 × 10−12; O2, 3.6 ± 0.9 × 10−11; NO, 1.5 ± 0.3 × 10−11; CO, 3.4 ± 0.5 × 10−12; N2O, 4.5 ± 0.5 × 10−12; CO2, 1.1 ± 0.3 × 10−11; CH4, 1.7 ± 0.2 × 10−11; CF4, 4.8 ± 0.3 × 10−12; SF6, 9.5 ± 1.0 × 10−13; C2H4, 3.3 ± 0.1 × 10−10; C2H2, 2.9 ± 0.2 × 10−10; Ge(CH3)4, 5.4 ± 0.2 × 10−11. The results are compared with previous data for Ge(1S0) derived in the single-shot mode where there is general agreement though with some exceptions which are discussed. The present data are also compared with analogous quenching rate data for the collisional removal of the lower lying Ge[4p2(1D2)] state (0.883 eV), also characterized by signal averaging methods similar to that described here.  相似文献   

16.
The triplet properties of the excited triplet state of pazelliptine (PZE), an antitumoral drug derived from ellipticine, were investigated in dioxane, ethanol and buffer aqueous solutions using the laser flash photolysis technique. The triplet absorption spectra and the kinetic parameters associated with the excited state decay were quite similar in the different solvents. 3PZE reacted with unexcited PZE in deaerated solutions (k = 6 × 1010 M−1 s−1) and was quenched by oxygen (k ≈ 2 × 107 s−1). The extinction coefficients of the triplet transition were estimated and used to calculate the singlet-triplet intersystem crossing quantum yields of about 5%.

A biphotonic ionization of PZE in buffer aqueous solution has been demonstrated in a previous work. This process was also observed in ethanol but not in dioxane. Mixed yttrium aluminum garnet laser harmonics (355 nm + 532 nm) and delayed-pulse experiments were carried out in order to determine the intermediate excited state involved in this photoionization process. The results indicate that pazelliptine radical cation and es are formed via a consecutive two-photon absoprtion in which the first excited singlet state is the only intermediate.  相似文献   


17.
The phase speciation of thorium and consequences for the residence times of colloids have been examined in seawater of the Middle Atlantic Bight (MAB) and the Gulf of Mexico. Two fractions of colloidal organic matter (COM), 0.2 μm > COM1 > 1 kD and 0.2 μm > COM10 > 10 kD, were sampled using cross-flow ultrafiltration techniques and measured for their 234Th activity and organic carbon concentration. The ratios of mass concentrations of COM1 to those of suspended particulate matter were as high as 10 in the MAB and 6–34 in the Gulf of Mexico. Higher concentrations of colloids may be of great importance in the biogeochemical cycling of many particle-reactive nuclides or trace elements owing to their high specific surface area and complexation capacity. A significant fraction of 234Th in the traditionally defined “dissolved” pool was found to be associated with colloids. On average, about 10% of “dissolved” 234Th was in the colloidal fraction of sizes between 10 kDa and 0.2 μm, and 50% was in the 1 kDa-0.2 μm fraction. Values of the partition coefficients [Kc: (0.5−4) × 106 ml g−1 for Kc1 and (0.5−7) × 106 ml g−1 for Kc10] of 234Th between truly dissolved (<1 kDa) and colloidal fractions approximated those for Th-particle interactions [Kp: (0.3−10) × 106 ml g−1], indicating that colloid and suspended particle surface sites are similar. The distribution of 234Th between dissolved, colloidal, and particulate phases was broadly similar to that of organic carbon in these oceanic environments. Thus, thorium isotopes might be used as tracers of marine organic carbon cycling. Residence times of colloids derived from 234Th:238U disequilibria were consistently short, ranging from 1 to 14 days for COM10 and from 5 to 65 days for COM1, suggesting that marine colloids are highly reactive in marine biogeochemical processes. The discrepancy between apparent turnover times of colloids (1 kDa) derived from Th scavenging and 14C measurements suggest that 234Th and 14C may trace different geochemical pathways of colloids in the ocean.  相似文献   

18.
Wang Q  Li N 《Talanta》2001,55(6):243-1225
The thiolactic acid (TLA) self-assembled monolayer modified gold electrode (TLA/Au) is demonstrated to catalyze the electrochemical response of norepinephrine (NE) by cyclic voltammetry. A pair of well-defined redox waves were obtained and the calculated standard rate constant (ks) is 5.11×10−3 cm s−1 at the self-assembled electrode. The electrode reaction is a pseudo-reversible process. The peak current and the concentration of NE are a linear relationship in the range of 4.0×10−5–2.0×10−3 mol l−1. The detection limit is 2.0×10−6 mol l−1. By ac impedance spectroscopy the apparent electron transfer rate constant (kapp) of Fe(CN)3−/Fe(CN)4− at the TLA/Au electrode was obtained as 2.5×10−5 cm s−1.  相似文献   

19.
The photoinduced electron transfer reactions of the triplet state of rose bengal (RB) and several electron donors were investigated by the complementary techniques of steady state and time-resolved electron paramagnetic resonance (EPR) and laser flash photolysis (LFP). The yield of radicals varied with the light fluence rate, RB concentration and, in particular, the electron donor used. Thus for L-dopa (dopa, dihydroxyphenylalanine) only 10% of RB anion radical (RB√−) was produced, with double the yield observed with NADH (NAD, nicotinamide adenine dinucleotide) as quencher and more than three times the yield observed with ascorbate as quencher. Quenching of the RB triplet was both reactive and physical with total quenching rate constants of 4 × 108 mol−1 dm3 s−1 and 8.5 × 108 mol−1 dm3 s−1 for ascorbate and NADH respectively. The rate constant for the photoinduced electron transfer from ascorbate to RB triplet was 1.4 × 108 mol−1 dm3 s−1 as determined by Fourier transform EPR (FT EPR). FT EPR spectra were spin polarized in emission at early times indicating a radical pair mechanism for the chemically induced dynamic electron polarization. Subsequent to the initial electron transfer production of radicals, a complex series of reactions was observed, which were dominated by processes such as recombination, disproportionation and secondary (bleaching) reactions.

It was observed that back electron transfer reactions could be prevented by mild oxidants such as ferric compounds and duroquinone, which were efficiently reduced by RB√−.  相似文献   


20.
To evaluate the contribution of local pulsed heating of light-absorbing microregions to biochemical activity, irradiation of Escherichia coli was carried out using femtosecond laser pulses (λ = 620 nm, τp=3 × 10−13 s, fp = 0.5 Hz, Ep = 1.1 × 10−3J cm−2, Iav = 5.5 × 10−4 W cm−2, Ip = 109 W cm−2) and continuous wave (CW) laser radiation (λ = 632.8 nm, I = 1.3 W cm−2). The irradiation dose required to produce a similar biological effect (a 160%–190% increase in the clonogenic activity of the irradiated cells compared with the non-irradiated controls) is a factor of about 103 lower for pulsed radiation than for CW radiation (3.3 × 10−1 and 7.8 × 102 J cm−2 respectively). The minimum size of the microregions transiently heated on irradiation with femtosecond laser pulses is estimated to be about 10 Å, which corresponds to the size of the chromophores of hypothetical primary photoacceptors—respiratory chain components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号