共查询到20条相似文献,搜索用时 0 毫秒
1.
随着能源危机的逐渐加剧,人们对压电俘能器研究的投入也与日俱增,目前常见的研究压电俘能器的模拟方法只能研究其接入简单的单一电阻负载电路时的性能,且不能解决压电俘能器的高强度直流电路耦合问题.因此,论文借助二阶范德波尔控制方程将压电俘能器的主要部件等效为电子元件,进而基于等效电路法建立了与变三角截面驰振压电振动俘能器相对应的等效电路模型.借助风洞实验验证了所建立的等效电路模型的准确性.采用该模型研究了外接电路,钝体顶角,外接电阻和来流速度对变三角截面驰振压电俘能器输出电压,输出功率和响应位移的影响,结果表明,随着电阻的增大,输出电压逐渐增大且增长率逐渐减小.交直流电路的最佳负载分别为1.05 MΩ和1.4 MΩ,当风速为7.03 m/s,钝体顶角为90°时,交直流电路输出电压和输出功率的峰值分别为41.34 V,0.974 mW和50.8 V,0.616 mW.随着钝体顶角的增大,输出电压,输出功率和响应位移均逐渐增大且增大的速度逐渐减小.等效电路模型可以高效,准确地对不同结构参数下和外界电路下的压电振动俘能器的输出功率,输出电压,响应位移及其影响因素进行研究,所提出的等效电路模型于加快对压电振动俘能器的研究与推广应用具有一定意义. 相似文献
2.
磁力耦合道路能量收集设计与动力学分析 总被引:1,自引:0,他引:1
通过在交通环境布置无线传感器等小型机电系统, 实现交通状况监测、交通系统管控、交通设施健康状态监测等, 可以使交通系统更加安全、有序、高效地运行. 但是, 如何为这些广泛分布的小型机电系统供能?本文提出了一种磁力耦合道路能量收集设计, 用以收集车辆滚压能量并转换成电能. 通过磁力耦合进行无接触能量传递, 减小了装置受到的冲击并使得装置具有良好密封性, 从而提升装置的鲁棒性. 通过升频齿轮机构、棘轮机构将车辆滚压激励转换为高速单向旋转, 并且通过换向齿轮机构能够继续收集复位弹性势能, 提高了收集装置的输出功率. 基于磁力耦合道路能量收集系统的工作原理建立了机电耦合动力学模型. 数值仿真探究了减速带限位距离和复位弹簧刚度等关键设计参数对能量采集系统动力学和电学性能的影响. 能量采集系统在车速为50 km/h时最大输出电压为76.28 V, 最大功率为59.94 W. 磁力耦合道路能量收集装置可以成为未来智慧交通系统的重要组成部分, 俘获交通环境能量为交通环境中小型机电系统提供可持续的绿色无碳电力. 相似文献
3.
利用流体动能能量发电为微电子器件供电已逐渐成为非线性振动领域的研究热点。利用永磁铁产生非线性回复力,将非线性回复力引入到悬臂梁压电能量捕获装置中,提出了一种三稳态尾流驰振能量压电发电装置,获得力学模型及系统控制方程,获得了三稳态系统的稳定和不稳定平衡点表达式,给出了发电系统存在三稳态运动时的结构参数的取值范围。重点研究了等平衡点不同势阱深度、等势阱深度不同平衡点位置对系统的动力学响应及发电性能的影响。结果表明,等平衡点条件下浅阱系统的起振折合流速更低、发电性能更好。 相似文献
4.
5.
研究了一个自由端附加小磁铁的悬臂梁在磁力作用下的双稳态动力学行为.首先,利用Hamilton原理和Euler-Bernoulli梁的基本方程建立了系统在非零平衡点处做微幅振动的动力学方程.其次,利用多尺度法对建立的模型进行理论分析,得到悬臂梁在非零平衡点处振动的幅频方程和位移解,并对解进行了稳定性分析.最后,通过建立实验装置,得到悬臂梁不同运动形式下的参数平面分类和悬臂梁在非零平衡点处振动的幅频关系,通过观察系统在非零平衡点处振动的理论预测,实验结果验证了非零平衡点处振动的理论分析的正确性.对照理论、实验和数值结果得到:在不同的外激励幅值和频率作用下,悬臂梁有三种不同的运动形式:在非零平衡点处的微幅振动;大范围往返运动;在两个非零平衡点之间的无规律运动. 相似文献
6.
驰振现象对工程结构危害很大,因此开展结构驰振方面的理论研究十分重要,在一般的驰振分析中大多仅考虑气动力为线性时的情况,本文研究了气动力非线性对结构横向向动力失稳临界风速的影响,采用了以i/v的高次多项式形式表示的气动力模型,用等效线性法求角结构驰振的非线性微分运动方程,研究了非线性项的影响,为应用和研究提供参考。 相似文献
7.
流致振动蕴含着可观的能量, 通过能量收集技术可将其转化为电能. 为提高低速流场中能量转化效率, 本文实验研究了不同截面下钝头体以及它们的宽厚比(W/T)对流致振动能量收集特性的影响, 并通过计算流体动力学(computational fluid dynamic, CFD)仿真分析了尾流特性. 流致振动能量收集装置由压电悬臂梁和不同截面的钝头体构成. 首先搭建了流致振动能量收集风洞实验平台, 钝头体的截面分别设置为矩形、三角形和D形, 宽厚比分别设定为1, 1.3, 1.8和2.5. 然后利用实验方法分析不同形状钝头体的宽厚比(W/T)对位移响应和电压响应的影响规律. 最后通过计算流体动力学模拟揭示实验结果的内在力学机理. 实验结果表明, 当钝头体截面为矩形时, 增大宽厚比可以显著提高电压输出峰值; 当钝头体为三角形和D形时, 增加宽厚比将使系统呈现“驰振”→“驰振 + 涡激振动”→“涡激振动”响应特性变化趋势, 提高了低风速时的能量收集效果. CFD结果解释了实验现象, 即随着宽厚比增加, 钝头体尾流会产生更加强劲的涡街, 显著提高流致振动能量收集效果. 相关结果可优化流致振动能量收集装置结构, 为提高低速流场的能量收集效果提供理论和实验依据. 相似文献
8.
9.
面内压电振动能量采集动力学设计与性能研究 总被引:1,自引:0,他引:1
压电振动能量采集将环境中普遍存在的机械能转换为电能,可以实现自供能传感、控制与驱动,具备灵活、节能环保、可持续的优势,具有广阔的应用前景.为了促进压电振动能量采集器件的集成与融合,提出面内压电振动能量采集,将压电振动能量采集器进行扁平化设计,使其在二维平面内采集振动能量,在保证较大功率输出下能够显著减小器件所需三维空间.为了提高输出功率与工作频宽,设计了具有双稳态与力放大机制的面内压电振动能量采集器.考虑弯张小变形,通过能量法建立了面内压电振动能量采集器的机电耦合动力学模型.分析了关键设计参数对面内压电振动能量采集器性能的影响.数值仿真了面内压电振动能量采集器在简谐激励下的俘能性能,结果表明,通过合理的设计,面内压电振动能量采集器可以低频、宽频弱激励下有效俘获能量.面内压电振动能量采集设计方法有利于推动便携式、可穿戴式自供能等方面的应用和产业化. 相似文献
10.
针对一类基于夹片弹簧的压电振动能量收集器,利用材料力学莫尔积分理论建立了振荡俘能结构中夹片弹簧的等效刚度模型,通过万能拉伸试验机验证了模型精度.在此基础上,讨论了夹片弹簧刚度线性简化的两种途径:拉伸曲线线性拟合和固有频率修正.研究结果表明,从夹片弹簧拉伸曲线上看,将其等效成线性弹簧具有一定的合理性;而在实际振动能量收集器结构中,若振动加速度相对较小,通过固有频率修正法对夹片弹簧刚度进行线性简化,其幅频响应特性与非线性模型的特性相近.该研究成果为压电振动能量收集器的动力学和机电耦合模型简化提供了理论支撑. 相似文献
11.
非线性能量阱(NES)是一种具有优良减振性能的非线性吸振器,主要由线性阻尼、非线性刚度和一个小质量块组成。本文在立方刚度NES基础上引入了两种不同类型的阻尼(库仑阻尼、立方阻尼),提出了一种具有混合阻尼的NES吸振器,研究了不同类型阻尼混合对系统动力学性能的影响。利用谐波平衡和伪弧长延拓法近似解析了系统的非线性运动方程,通过与数值解进行对比验证了解析解的准确性。基于振动传递率和能量耗散对比分析了混合阻尼NES系统的动力学特性。通过传递率评估和优化了混合阻尼NES吸振器(质量、刚度、阻尼)参数对系统减振性能的影响。结果表明:含有混合阻尼的NES吸振器相比于常规的NES吸振器在振动抑制方面具有显著的优势;在系统受到外部激励后,含有混合阻尼的NES吸振器比常规的NES吸振器具有更高的能量吸收耗散比例;不同类型阻尼的混合在系统减振性和能量耗散方面的优势也显示了其在其他工程领域应用的可能性和潜力。 相似文献
12.
为揭示高精度雷管短微差爆破干扰降振机理,选取紫金山金铜矿露天爆破实测的单段波形信号,利用Matlab分析了不同微差间隔下两段叠加信号的时频特征; 综合考虑爆破振动三要素并结合HHT(Hilbert-Huang transform)能量定义降能率,分析了段数、相邻振幅比和最大段药量位置对短微差爆破叠加信号降振效果的影响。根据研究成果,爆破设计时应避免出现前后段数药量差距过大,并尽量将较大药量的段数靠后起爆。研究表明:相同微差间隔下随着段数的增加,叠加信号降能率逐渐增大,当段数达到一定数量后增加分段数,微差爆破的降振效果并不明显; 微差爆破中相邻振幅比越接近1,降振效果越明显; 最大段药量靠后的叠加信号降能率大于其他顺序。 相似文献
13.
潮流能分布广泛,且储量巨大,具备巨大的规模化开发利用价值.流激振动是一种常见的流固耦合现象,通过柱体流激振动能够在流速较低时实现有效的能量转换,基于柱体流激振动的能量俘获技术在未来具备广阔的工程应用前景.近年来,针对柱体结构流激振动特性和能量俘获性能,出现了大量的实验和数值仿真研究工作.文章全面阐述了多种截面形式的单个柱体、柱群结构流激振动能量俘获理论与技术方面的研究进展:对于单个圆柱流激振动能量俘获,目前已基本揭示了被动湍流控制器参数、系统阻尼、雷诺数和边界条件等因素对能量俘获性能的影响规律,基本完成了理论和技术积累;对于非圆截面柱体流激振动能量俘获,已初步明确特定来流攻角、系统质量比、系统阻尼、系统刚度和雷诺数条件下三角形、四边形、多边形与异形等多种截面形式柱体的流激振动作用机理和能量俘获能力;对于柱群的流激振动能量俘获,各柱体振子之间存在流场干涉,需要合理设计柱体排布形式、柱体间距和系统阻尼等参数,实现流体能量俘获最大化.通过综述国内外流激振动能量俘获理论和技术方面的研究进展,对今后该问题的研究进行了力所能及的展望,期望促进流激振动能量俘获理论的发展和流激振动能量转换装置的工程应... 相似文献
14.
15.
目前,大多数的能量收集器从低频运动中只能收集到较少的能量,且能量收集效率较低.低频激励下发电输出能量低是当前限制电磁俘能器多场景应用的关键问题,而电磁感应发电作为目前应用广泛且较为成熟的发电技术,具有高功率输出,被广泛应用于能量收集领域,有望解决这一技术瓶颈.文章提出了一种基于斜齿离合传动系统的电磁式振动俘能器,以系统性解决输出频率低和能量转化时间短的问题.俘能器的机械传动系统由直线-旋转转化模块、牙嵌离合模块和能量存储/释放模块3部分构成,可将外界低频、不规则的瞬时激励(约0.2~5 Hz)转化为高频、连续的单向旋转运动以实现能量转换效率最大化.对所提出的俘能器建立了机电耦合动力学模型并进行实验验证.研究结果表明,俘能器在外界脉冲激励下可以实现开路状态长达30 s的输出;接入负载后惯性旋转运动的最高转速可达750 r/min,并实现了运动频率从0.17~50 Hz的近300倍提升;单层发电模块的峰值功率可达1.25 W,两层发电模块并联输出2.5 W的峰值功率,可实现134 mW平均输出功率.此外,其紧凑高效的传动结构设计使得俘能器可以进一步集成到可穿戴设备中,在人体能量收集领域和构... 相似文献
16.
冲击载荷下扩展裂纹尖端动态能量释放率分布的焦散线分析 总被引:3,自引:2,他引:3
借助高速摄影捕捉裂纹瞬态扩展过程,利用动态焦散线研究了含有裂纹的三点弯曲梁在冲击载荷作用下扩展裂纹尖端的动态能量释放率分布规律;综合分析了裂纹扩展时间、长度、速度,以及扩展裂纹尖端动态应力强度因子与它的变化关系,表明了动态能量释放率在裂纹扩展过程中的驱动作用。 相似文献
17.
钢纤维混凝土动态劈裂试验的能量耗散分析 总被引:1,自引:0,他引:1
利用分离式Hopkinson压杆(SHPB)装置进行钢纤维混凝土(SFRC)动态劈裂试验.介绍了其试验原理并阐述了利用劈裂强度和应变率指标反映混凝土抗拉性能的不足,提出了试样耗散能和入射波能量变化率指标.通过对试验中试样能量耗散的详细分析,发现试样耗散能较好地反映了混凝土冲击载荷作用下抗拉性能的变化.对于混凝土类材料,改变基本材料组分(水、水泥、砂和粗集料)配比不能有效提升其抗拉性能,钢纤维的增强效果有限.而采用硅灰代替部分水泥,则使混凝土抗拉、抗压和钢纤维增强效果三方面均得到有效提升. 相似文献
18.
为提升传统刚度基立方非线性能量阱的性能,在立方刚度振子两侧加入弹磁元件,从而构造出一种新型弹磁强化非线性能量阱,通过实验研究了该能量阱的瞬态动力学响应。弹磁元件是由压缩弹簧和安装在弹簧上的永磁铁构成的,该磁铁与安装在质量块上的磁铁之间存在斥力。当立方振子进行往复运动时,磁斥力可以对振子的响应进行调节。在不同初始位移下,对比研究了加入磁铁前后振子的位移响应之间的差异,分析了弹磁元件对振子的弹性势能与衰减至平衡状态所需时间的影响,并研究了压缩弹簧的线径和弹磁间隙对振子响应的影响。结果表明,当线径较小时,安装弹磁元件的振子在绝大部分情况下振动衰减时间更短,弹性势能更小;当线径较大且初始位移较大时,则安装弹磁元件的振子的振动衰减时间较长,弹性势能较大。 相似文献
19.
压电材料因其具有良好的机电耦合特性, 在振动能量俘获和结构振动控制领域有着良好的应用前景. 基于同步开关和电感的压电元件接口控制电路, 可以通过振荡电路工作原理调节压电元件的电压幅值和相位, 优化压电振动系统的机电能量转化. 优化型同步电荷提取技术即基于上述接口控制电路实现了压电振动能到电能的高效转换. 本文提出了一种衍生于优化型同步电荷提取电路的压电阻尼半主动控制电路, 借鉴反激变压器的原、副边能量转换特性, 实现了压电振动控制系统从电能到机械能的能量操控, 进而达到结构振动抑制的效果. 至此, 结合了压电电荷能提取与压电阻尼半主动控制技术的新电路, 以反激变压器为核心实现了压电振动能量的双向操纵. 论文首先介绍了相应的控制电路及工作原理, 推导了新型同步开关阻尼技术下的结构的振动阻尼比模型, 搭建了压电悬臂梁振动控制实验平台, 最终通过实验验证了理论模型, 并使用更简单的控制方法解决了振动控制系统的稳定性问题. 相似文献
20.
大型液体火箭结构模态的空间化分布特征导致结构振动、姿态运动和推进系统液路脉动存在相互耦合,进而影响传统姿控回路的稳定性. 针对大型液体火箭, 充分考虑姿态控制系统对箭体姿态动力学和弹性振动的影响, 以及箭体结构弹性振动与推进系统的耦合作用(跷振(POGO)), 建立了姿控与跷振大回路耦合模型. 该模型包含了推进系统、结构系统与姿控系统之间的耦合因素, 可进行姿控-结构-推进大回路耦合机理研究. 该模型具有非奇异的优点, 可以直接用于频域分析和时域仿真. 基于该模型研究了我国某型号液体捆绑火箭推进系统参数——泵增益和蓄压器能量值对姿态运动与结构振动稳定性的影响. 研究得出, 泵增益和蓄压器能量值的变化不仅导致了结构振动的不稳定, 而且也导致了姿态运动的发散. 因此, 对于大型液体捆绑火箭, 推进系统与姿控系统之间存在不可忽略的耦合作用, 在设计姿控系统时, 有必要考虑推进系统对姿控系统稳定性的影响. 相似文献