首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分子电子学是研究单分子器件的构筑、性质以及功能调控的一门新兴学科。其中,金属/分子/金属结的构筑和表征是现阶段分子电子学的主要研究内容。裂结技术是当前分子电子学研究的主要实验方法,主要包括机械可控裂结技术和扫描隧道显微镜裂结技术。本文对裂结技术进行了介绍,并对近年来利用这些技术,在单分子尺度化学反应的检测和动力学研究,以及将这些技术与溶液环境、静电场、电化学门控等方法相结合,调控单分子器件的电输运性质等方面所取得的进展进行了概述。  相似文献   

2.
The van der Waals interactions (vdW) between π-conjugated molecules offer new opportunities for fabricating heterojunction-based devices and investigating charge transport in heterojunctions with atomic thickness. In this work, we fabricate sandwiched single-molecule bilayer-graphene junctions via vdW interactions and characterize their electrical transport properties by employing the cross-plane break junction (XPBJ) technique. The experimental results show that the cross-plane charge transport through single-molecule junctions is determined by the size and layer number of molecular graphene in these junctions. Density functional theory (DFT) calculations reveal that the charge transport through molecular graphene in these molecular junctions is sensitive to the angles between the graphene flake and peripheral mesityl groups, and those rotated groups can be used to tune the electrical conductance. This study provides new insight into cross-plane charge transport in atomically thin junctions and highlights the role of through-space interactions in vdW heterojunctions at the molecular scale.

Charge transport through single-molecule bilayer-graphene junctions fabricated by a cross-plane break junction technique can be tuned at the atomic level.  相似文献   

3.
电化学门控已成为一种可行且高效调节单分子电导的方法.在本研究中,我们证实了具有两个平行苯环的单分子电路中电子传输可以通过电化学门控控制.首先,我们利用STM-BJ技术以金为电极构筑了具有两条平行路径的单分子结.与单条路径的单分子结相比,两条路径的分子结由于具有增强性量子干涉效应,具有2.82倍的电导值.进一步地,我们利...  相似文献   

4.
利用基于电化学跳跃接触的扫描隧道显微镜裂结法(ECSTM-BJ), 通过现场形成金属电极, 对以Cu和Ag为电极的对苯二甲酸单分子结电导进行了测量. 研究结果表明: 利用该方法对所有数据直接线性统计即可得到很好结果; 两种电极下都存在两套高和低电导值, 其中以Cu为电极的单分子结电导高低值分别为11.5和4.0 nS, 而以Ag为电极的单分子结电导分别为10.3和3.8 nS, 高值都约为低值的3倍, 且以Cu为电极的单分子结电导要略大于以Ag为电极的电导, 可归结于电极和分子的耦合不同造成的. 与同样条件下测量得到的烷基链羧酸单分子结电导只存在一套值相比,对苯二甲酸表现出两套电导值, 反应了分子内主链对分子结电导的影响.  相似文献   

5.
Understanding the effects of intermolecular interactions on the charge-transport properties of metal/molecule/metal junctions is an important step towards using individual molecules as building blocks for electronic devices. This work reports a systematic electron-transport investigation on a series of "core-shell"-structured oligo(phenylene ethynylene) (Gn-OPE) molecular wires. By using dendrimers of different generations as insulating "shells", the intermolecular π-π interactions between the OPE "cores" can be precisely controlled in single-component monolayers. Three techniques are used to evaluate the electron-transport properties of the Au/Gn-OPE/Au molecular junctions, including crossed-wire junction, scanning tunneling spectroscopy (STS), and scanning tunneling microscope (STM) break-junction techniques. The STM break-junction measurement reveals that the electron-transport pathways are strongly affected by the size of the side groups. When the side groups are small, electron transport could occur through three pathways, including through single-molecule junctions, double-molecule junctions, and molecular bridges between adjacent molecules formed by aromatic π-π coupling. The dendrimer shells effectively prohibit the π-π coupling effect, but at the same time, very large dendrimer side groups may hinder the formation of Au-S bonds. A first-generation dendrimer acts as an optimal shell that only allows electron transport through the single-molecule junction pathway, and forbids the other undesired pathways. It is demonstrated that the dendrimer-based core-shell strategy allows the single-molecule conductance to be probed in a homogenous monolayer without the influence of intermolecular π-π interactions.  相似文献   

6.
Molecular electronics is an important field for the application of nanotechnologies with an ultimate goal of building functional devices using single molecules or molecular arrays to realize the same functionality as macroscopic devices. To attain this goal, reliable techniques for measuring and manipulating electron transfer processes through single molecules are essential. There are various techniques and many environmental factors influencing single-molecule electronic conductance measurements. In this review, we first provide a detailed introduction and classification of the current well-accepted techniques in this field for measuring single-molecule conductance. All available techniques are summarized into two categories: the fixed junction technique and break junction technique. The break junction technique involves repeatedly forming and breaking molecular junctions by mechanically controlling a pair of electrodes moving into and out of contact in the presence of target molecules. Single-molecule conductance can be determined from the conductance plateaus that appear in typical conductance decay traces when molecules bind two electrodes during their separation process. In contrast, the fixed junction technique is to fix the distance between a pair of electrodes and measure the conductance fluctuations when a single molecule binds the two electrodes stochastically. Both techniques comprise different application methods and have been employed preferentially by different groups. Specific features of both techniques and their intrinsic advantages are compared and summarized in Section 4.  相似文献   

7.
Constructing single-molecule parallel circuits with multiple conduction channels is an effective strategy to improve the conductance of a single molecular junction, but rarely reported. We present a novel through-space conjugated single-molecule parallel circuit (f-4Ph-4SMe) comprised of a pair of closely parallelly aligned p-quaterphenyl chains tethered by a vinyl bridge and end-capped with four SMe anchoring groups. Scanning-tunneling-microscopy-based break junction (STM-BJ) and transmission calculations demonstrate that f-4Ph-4SMe holds multiple conductance states owing to different contact configurations. When four SMe groups are in contact with two electrodes at the same time, the through-bond and through-space conduction channels work synergistically, resulting in a conductance much larger than those of analogous molecules with two SMe groups or the sum of two p-quaterphenyl chains. The system is an ideal model for understanding electron transport through parallel π-stacked molecular systems and may serve as a key component for integrated molecular circuits with controllable conductance.  相似文献   

8.
Quantum interference(QI) effects, which offer unique opportunities to widely manipulate the charge transport properties in the molecular junctions, will have the potential for achieving high thermopower.Here we developed a scanning tunneling microscope break junction technique to investigate the thermopower through single-molecule thiophene junctions. We observed that the thermopower of 2,4-TPSAc with destructive quantum interference(DQI) was nearly twice of 2,5-TP-SAc without DQI, while the con...  相似文献   

9.
We report on the measurement and statistical study of thousands of current-voltage characteristics and transition voltage spectra (TVS) of single-molecule junctions with different contact geometries that are rapidly acquired using a new break junction method at room temperature. This capability allows one to obtain current-voltage, conductance voltage, and transition voltage histograms, thus adding a new dimension to the previous conductance histogram analysis at a fixed low-bias voltage for single molecules. This method confirms the low-bias conductance values of alkanedithiols and biphenyldithiol reported in literature. However, at high biases the current shows large nonlinearity and asymmetry, and TVS allows for the determination of a critically important parameter, the tunneling barrier height or energy level alignment between the molecule and the electrodes of single-molecule junctions. The energy level alignment is found to depend on the molecule and also on the contact geometry, revealing the role of contact geometry in both the contact resistance and energy level alignment of a molecular junction. Detailed statistical analysis further reveals that, despite the dependence of the energy level alignment on contact geometry, the variation in single-molecule conductance is primarily due to contact resistance rather than variations in the energy level alignment.  相似文献   

10.
This study describes the modulation of tunneling probabilities in molecular junctions by switching one of two parallel intramolecular pathways. A linearly conjugated molecular wire provides a rigid framework that allows a second, cross-conjugated pathway to be effectively switched on and off by protonation, affecting the total conductance of the junction. This approach works because a traversing electron interacts with the entire quantum-mechanical circuit simultaneously; Kirchhoff's rules do not apply. We confirm this concept by comparing the conductances of a series of compounds with single or parallel pathways in large-area junctions using EGaIn contacts and single-molecule break junctions using gold contacts. We affect switching selectively in one of two parallel pathways by converting a cross-conjugated carbonyl carbon into a trivalent carbocation, which replaces destructive quantum interference with a symmetrical resonance, causing an increase in transmission in the bias window.  相似文献   

11.
Employing a scanning tunneling microscopy based beak junction technique and mechanically controlled break junction experiments, we investigated tolane (diphenylacetylene)-type single molecular junctions having four different anchoring groups (SH, pyridyl (PY), NH(2), and CN) at a solid/liquid interface. The combination of current-distance and current-voltage measurements and their quantitative statistical analysis revealed the following sequence for junction formation probability and stability: PY > SH > NH(2) > CN. For all single molecular junctions investigated, we observed the evolution through multiple junction configurations, with a particularly well-defined binding geometry for PY. The comparison of density functional theory type model calculations and molecular dynamics simulations with the experimental results revealed structure and mechanistic details of the evolution of the different types of (single) molecular junctions upon stretching quantitatively.  相似文献   

12.
The conductivity of a single aromatic ring, perpendicular to its plane, is determined using a new strategy under ambient conditions and at room temperature by a combination of molecular assembly, scanning tunneling microscopy (STM) imaging, and STM break junction (STM‐BJ) techniques. The construction of such molecular junctions exploits the formation of highly ordered structures of flat‐oriented mesitylene molecules on Au(111) to enable direct tip/π contacts, a result that is not possible by conventional methods. The measured conductance of Au/π/Au junction is about 0.1 Go , two orders of magnitude higher than the conductance of phenyl rings connected to the electrodes by standard anchoring groups. Our experiments suggest that long‐range ordered structures, which hold the aromatic ring in place and parallel to the surface, are essential to increase probability of the formation of orientation‐controlled molecular junctions.  相似文献   

13.
The experimental investigation of intermolecular charge transport in π-conjugated materials is challenging. Herein, we describe the investigation of charge transport through intermolecular and intramolecular paths in single-molecule and single-stacking thiophene junctions by the mechanically controllable break junction (MCBJ) technique. We found that the ability for intermolecular charge transport through different single-stacking junctions was approximately independent of the molecular structure, which contrasts with the strong length dependence of conductance in single-molecule junctions with the same building blocks, and the dominant charge-transport path of molecules with two anchors transited from an intramolecular to an intermolecular path when the degree of conjugation increased. An increase in conjugation further led to higher binding probability owing to the variation in binding energies, as supported by DFT calculations.  相似文献   

14.
In order to design molecular electronic devices with high performance and stability, it is crucial to understand their structure-to-property relationships. Single-molecule break junction measurements yield a large number of conductance-distance traces, which are inherently highly stochastic. Here we propose a weakly supervised deep learning algorithm to classify and segment these conductance traces, a method that is mainly based on transfer learning with the pretrain-finetune technique. By exploiting the powerful feature extraction capabilities of the pretrained VGG-16 network, our convolutional neural network model not only achieves high accuracy in the classification of the conductance traces, but also segments precisely the conductance plateau from an entire trace with very few manually labeled traces. Thus, we can produce a more reliable estimation of the junction conductance and quantify the junction stability. These findings show that our model has achieved a better accuracy-to-manpower efficiency balance, opening up the possibility of using weakly supervised deep learning approaches in the studies of single-molecule junctions.  相似文献   

15.
The charge transport characteristics of 11 tailor-made dithiol-terminated oligo(phenylene-ethynylene) (OPE)-type molecules attached to two gold electrodes were studied at a solid/liquid interface in a combined approach using an STM break junction (STM-BJ) and a mechanically controlled break junction (MCBJ) setup. We designed and characterized 11 structurally distinct dithiol-terminated OPE-type molecules with varied length and HOMO/LUMO energy. Increase of the molecular length and/or of the HOMO-LUMO gap leads to a decrease of the single-junction conductance of the linearly conjugate acenes. The experimental data and simulations suggest a nonresonant tunneling mechanism involving hole transport through the molecular HOMO, with a decay constant β = 3.4 ± 0.1 nm(-1) and a contact resistance R(c) = 40 kΩ per Au-S bond. The introduction of a cross-conjugated anthraquinone or a dihydroanthracene central unit results in lower conductance values, which are attributed to a destructive quantum interference phenomenon for the former and a broken π-conjugation for the latter. The statistical analysis of conductance-distance and current-voltage traces revealed details of evolution and breaking of molecular junctions. In particular, we explored the effect of stretching rate and junction stability. We compare our experimental results with DFT calculations using the ab initio code SMEAGOL and discuss how the structure of the molecular wires affects the conductance values.  相似文献   

16.
Understanding the quantum effect in the cross-conjugated system is of fundamental significance in molecular electronics. In this study, four molecules Xa-O, Xa, BP and BP-O were synthesized to investigate the destructive quantum interference(DQI) of a carbonyl bridge. The single-molecule conductance measured by the scanning tunneling microscope break junction(STM-BJ) technique demonstrates an increase in the conductance from molecule BP-O to molecule Xa-O as the cross-conjugated system is extended. Theoretical calculations show that the explicit DQI feature is presented in BP-O but absent in Xa-O, which indicates the removal of DQI in the restrained structures and results in the conductance enhancement in Xa-O.  相似文献   

17.
The symmetry of a molecule junction has been shown to play a significant role in determining the conductance of the molecule, but the details of how conductance changes with symmetry have heretofore been unknown. Herein, we investigate a naphthalenedithiol single-molecule system in which sulfur atoms from the molecule are anchored to two facing gold electrodes. In the studied system, the highest single-molecule conductance, for a molecule junction of 1,4-symmetry, is 110 times larger than the lowest single-molecule conductance, for a molecule junction of 2,7-symmetry. We demonstrate clearly that the measured dependence of molecule junction symmetry for single-molecule junctions agrees with theoretical predictions.  相似文献   

18.
The experimental investigation of side-chain effects on intramolecular charge transport in π-conjugated molecules is essential but remains challenging. Herein, the dependence of intra-molecular conductance on the nature of branching alkyl chains is investigated through a combination of the scanning tunneling microscope break junction (STM-BJ) technique and density functional theory. Three thiophene-flanked diketopyrrolopyrrole (DPP) derivatives with different branching alkyl chains (isopentane, 3-methylheptane, and 9-methylnonadecane) are used with phenylthiomethyl groups as the anchoring groups. The results of single-molecule conductance measurements show that as the alkyl chain becomes longer, the torsional angles between the aromatic rings increase due to steric crowding, and therefore, the molecular conductance of DPP decreases due to reduction in conjugation. Both theoretical simulations and 1H NMR spectra demonstrate that the planarity of the DPPs is directly reduced after introducing longer branching alkyl chains, which leads to a reduced conductance. This work indicates that the effect of the insulating side chain on the single-molecule conductance cannot be neglected, which should be considered for the design of future organic semiconducting materials.  相似文献   

19.
The electrical characterization on single-molecule benzene dithiols with different connectivities showed that the meta-BDT has the lowest conductance, which suggested that there is destructive quantum.  相似文献   

20.
Designing highly insulating sub-nanometer molecules is difficult because tunneling conductance increases exponentially with decreasing molecular length. This challenge is further enhanced by the fact that most molecules cannot achieve full conductance suppression with destructive quantum interference. Here, we present results for a series of small saturated heterocyclic alkanes where we show that conductance is suppressed due to destructive interference. Using the STM-BJ technique and density functional theory calculations, we confirm that their single-molecule junction conductance is lower than analogous alkanes of similar length. We rationalize the suppression of conductance in the junctions through analysis of the computed ballistic current density. We find there are highly symmetric ring currents, which reverse direction at the antiresonance in the Landauer transmission near the Fermi energy. This pattern has not been seen in earlier studies of larger bicyclic systems exhibiting interference effects and constitutes clear-cut evidence of destructive σ-interference. The finding of heterocyclic alkanes with destructive quantum interference charts a pathway for chemical design of short molecular insulators using organic molecules.

We present a combined experimental and theoretical study of small saturated heterocyclic alkanes and show that they perform well as insulators with an electronic transmission that is suppressed due to destructive interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号