首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
For a piecewise analytical Hamiltonian system with a cusp on a switch line, which has a family of periodic orbits near a generalized homoclinic loop, we study the maximum number of limit cycles bifurcating from the periodic orbits. For doing so, we first obtain the asymptotic expressions of the Melnikov functions near the loop. Finally we present two examples illustrating applications of the main results.  相似文献   

2.
研究了一类3维反转系统中包含2个鞍点的对称异维环分支问题, 且仅限于研究系统的线性对合R的不变集维数为1的情形. 给出了R-对称异宿环与R-对称周期轨线存在和共存的条件, 同时也得到了R-对称的重周期轨线存在性. 其 次, 给出了异宿环、 同宿轨线、 重同宿轨线和单参数族周期轨线的存在性、 唯一性和共存性等结论, 并且发现不可数无穷条周期轨线聚集在某一同宿轨线的小邻域内. 最后给出了相应的分支图.  相似文献   

3.
We consider periodic perturbations of conservative systems. The unperturbed systems are assumed to have two nonhyperbolic equilibria connected by a heteroclinic orbit on each level set of conservative quantities. These equilibria construct two normally hyperbolic invariant manifolds in the unperturbed phase space, and by invariant manifold theory there exist two normally hyperbolic, locally invariant manifolds in the perturbed phase space. We extend Melnikov’s method to give a condition under which the stable and unstable manifolds of these locally invariant manifolds intersect transversely. Moreover, when the locally invariant manifolds consist of nonhyperbolic periodic orbits, we show that there can exist heteroclinic orbits connecting periodic orbits near the unperturbed equilibria on distinct level sets. This behavior can occur even when the two unperturbed equilibria on each level set coincide and have a homoclinic orbit. In addition, it yields transition motions between neighborhoods of very distant periodic orbits, which are similar to Arnold diffusion for three or more degree of freedom Hamiltonian systems possessing a sequence of heteroclinic orbits to invariant tori, if there exists a sequence of heteroclinic orbits connecting periodic orbits successively.We illustrate our theory for rotational motions of a periodically forced rigid body. Numerical computations to support the theoretical results are also given.  相似文献   

4.
Bifurcations of heterodimensional cycles with two saddle points   总被引:1,自引:0,他引:1  
The bifurcations of 2-point heterodimensional cycles are investigated in this paper. Under some generic conditions, we establish the existence of one homoclinic loop, one periodic orbit, two periodic orbits, one 2-fold periodic orbit, and the coexistence of one periodic orbit and heteroclinic loop. Some bifurcation patterns different to the case of non-heterodimensional heteroclinic cycles are revealed.  相似文献   

5.
Invariant manifold play an important role in the qualitative analysis of dynamical systems, such as in studying homoclinic orbit and heteroclinic orbit. This paper focuses on stable and unstable manifolds of hyperbolic singular points. For a type of n-dimensional quadratic system, such as Lorenz system, Chen system, Rossler system if n = 3, we provide the series expression of manifolds near the hyperbolic singular point, and proved its convergence using the proof of the formal power series. The expressions can be used to investigate the heteroclinic orbits and homoclinic orbits of hyperbolic singular points.  相似文献   

6.
7.
In this paper, the authors consider limit cycle bifurcations for a kind of nonsmooth polynomial differential systems by perturbing a piecewise linear Hamiltonian system with a center at the origin and a heteroclinic loop around the origin. When the degree of perturbing polynomial terms is n(n ≥ 1), it is obtained that n limit cycles can appear near the origin and the heteroclinic loop respectively by using the first Melnikov function of piecewise near-Hamiltonian systems, and that there are at most n + [(n+1)/2] limit cycles bifurcating from the periodic annulus between the center and the heteroclinic loop up to the first order in ε. Especially, for n = 1, 2, 3 and 4, a precise result on the maximal number of zeros of the first Melnikov function is derived.  相似文献   

8.
In this paper, the authors develop new global perturbation techniques for detecting the persistence of transversal homoclinic orbits in a more general nondegenerated system with action-angle variable. The unperturbed system is assumed to have saddle-center type equilibrium whose stable and unstable manifolds intersect in one dimensional manifold, and does not have to be completely integrable or near-integrable. By constructing local coordinate systems near the unperturbed homoclinic orbit, the conditions of existence of transversal homoclinic orbit are obtained, and the existence of periodic orbits bifurcated from homoclinic orbit is also considered.  相似文献   

9.
A cubic system having three homoclinic loops perturbed by Z3 invariant quintic polynomials is considered. By applying the qualitative method of differential equations and the numeric computing method, the Hopf bifurcation, homoclinic loop bifurcation and heteroclinic loop bifurcation of the above perturbed system are studied. It is found that the above system has at least 12 limit cycles and the distributions of limit cycles are also given.  相似文献   

10.
In this paper, a geometrical perturbation method is employed to prove the existence of heteroclinic orbits for the kinetic system of near-integrable coupled nonlinear Schrödinger (CNLS) equations. Furthermore, we obtain the persistence of homoclinic orbits for the perturbed CNLS equations with even and periodic boundary conditions.  相似文献   

11.
The present work completes the study of the conditions under which Melnikov method can be used when the unperturbed system has a parabolic periodic orbit with a homoclinic loop, by considering the case of orbits whose associated Poicaré map has linear part equal to the identity. The result is that the conditions for the persistence under perturbation of the invariant manifolds also ensure the convergence of the Melnikov integral and hence the applicability of the method.  相似文献   

12.
In this paper, we study the dynamical behavior for a 4-dimensional reversible system near its heteroclinic loop connecting a saddle-focus and a saddle. The existence of infinitely many reversible 1-homoclinic orbits to the saddle and 2-homoclinic orbits to the saddle-focus is shown. And it is also proved that, corresponding to each 1-homoclinic (resp. 2-homoclinic) orbit F, there is a spiral segment such that the associated orbits starting from the segment are all reversible 1-periodic (resp. 2-periodic) and accumulate onto F. Moreover, each 2-homoclinic orbit may be also accumulated by a sequence of reversible 4-homoclinic orbits.  相似文献   

13.
We discuss bifurcation of periodic orbits in discontinuous planar systems with discontinuities on finitely many straight lines intersecting at the origin and the unperturbed system has either a limit cycle or an annulus of periodic orbits. Assume that the unperturbed periodic orbits cross every switching line transversally exactly once. For the first case we give a condition for the persistence of the limit cycle. For the second case, we obtain the expression of the first order Melnikov function and establish sufficient conditions on the number of limit cycles bifurcate from the periodic annulus. Then we generalize our results to systems with discontinuities on finitely many smooth curves. As an application, we present a piecewise cubic system with 4 switching lines and show that the maximum number of limit cycles bifurcate from the periodic annulus can be affected by the position of the switching lines.  相似文献   

14.
This article concerns arbitrary finite heteroclinic networks in any phase space dimension whose vertices can be a random mixture of equilibria and periodic orbits. In addition, tangencies in the intersection of un/stable manifolds are allowed. The main result is a reduction to algebraic equations of the problem to find all solutions that are close to the heteroclinic network for all time, and their parameter values. A leading order expansion is given in terms of the time spent near vertices and, if applicable, the location on the non-trivial tangent directions. The only difference between a periodic orbit and an equilibrium is that the time parameter is discrete for a periodic orbit. The essential assumptions are hyperbolicity of the vertices and transversality of parameters. Using the result, conjugacy to shift dynamics for a generic homoclinic orbit to a periodic orbit is proven. Finally, equilibrium-to-periodic orbit heteroclinic cycles of various types are considered.  相似文献   

15.
In this paper, we study the bifurcation of limit cycles in piecewise smooth systems by perturbing a piecewise Hamiltonian system with a generalized homoclinic or generalized double homoclinic loop. We first obtain the form of the expansion of the first Melnikov function. Then by using the first coefficients in the expansion, we give some new results on the number of limit cycles bifurcated from a periodic annulus near the generalized (double) homoclinic loop. As applications, we study the number of limit cycles of a piecewise near-Hamiltonian systems with a generalized homoclinic loop and a central symmetric piecewise smooth system with a generalized double homoclinic loop.  相似文献   

16.
We analyze homoclinic orbits near codimension-1 and -2 heteroclinic cycles between an equilibrium and a periodic orbit for ordinary differential equations in three or higher dimensions. The main motivation for this study is a self-organized periodic replication process of travelling pulses which has been observed in reaction-diffusion equations. We establish conditions for existence and uniqueness of countably infinite families of curve segments of 1-homoclinic orbits which accumulate at codimension-1 or -2 heteroclinic cycles. The main result shows the bifurcation of a number of curves of 1-homoclinic orbits from such codimension-2 heteroclinic cycles which depends on a winding number of the transverse set of heteroclinic points. In addition, a leading order expansion of the associated curves in parameter space is derived. Its coefficients are periodic with one frequency from the imaginary part of the leading stable Floquet exponents of the periodic orbit and one from the winding number.  相似文献   

17.
We study the role of the unstable equilibrium points in the transfer of matter in a galaxy using the potential of a rotating triaxial system. In particular, we study the neighbourhood of these points for energy levels and for main model parameters where the zero velocity curves just open and form a bottleneck in the region. For these energies, the transfer of matter from the inner to the outer parts and vice versa starts being possible. We study how the dynamics around the unstable equilibrium points is driven, by performing a partial normal form scheme and by computing the invariant manifolds of periodic orbits and quasi-periodic orbits using the reduced Hamiltonian. In particular, we compute some homoclinic and heteroclinic orbits playing a crucial role. Our results also show that in slow rotating and/or axisymmetric systems the hyperbolic character of the equilibrium points is cancelled, so that no transfer of matter is possible through the bottleneck.  相似文献   

18.
We consider 4-dimensional, real, analytic Hamiltonian systems with a saddle center equilibrium (related to a pair of real and a pair of imaginary eigenvalues) and a homoclinic orbit to it. We find conditions for the existence of transversal homoclinic orbits to periodic orbits of long period in every energy level sufficiently close to the energy level of the saddle center equilibrium. We also consider one-parameter families of reversible, 4-dimensional Hamiltonian systems. We prove that the set of parameter values where the system has homoclinic orbits to a saddle center equilibrium has no isolated points. We also present similar results for systems with heteroclinic orbits to saddle center equilibria. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
This paper deal with the global dynamics of planar piecewise linear refracting systems of saddle–saddle type with a straight line of separation. We investigate the singularities, limit cycles, homoclinic orbits, heteroclinic orbits and make the classification of global phase portraits in the Poincaré disk for the refracting systems. We prove that these systems have 18 topologically different global phase portraits.  相似文献   

20.
We concern the number of limit cycles of a polynomial system with degree nine. We prove that under different conditions, the system can have 12 and 20 limit cycles bifurcating from a compound loop with five saddles. Our method relies upon the Melnikov function method and the method of stability-changing of a double homoclinic loop proposed by the authors[J. Yang, Y. Xiong and M. Han, {\em Nonlinear Anal-Theor.}, 2014, 95, 756--773].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号