首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper,we provide a number of new estimates on the stability and convergence of both hybrid discontinuous Galerkin(HDG)and weak Galerkin(WG)methods.By using the standard Brezzi theory on mixed methods,we carefully define appropriate norms for the various discretization variables and then establish that the stability and error estimates hold uniformly with respect to stabilization and discretization parameters.As a result,by taking appropriate limit of the stabilization parameters,we show that the HDG method converges to a primal conforming method and the WG method converges to a mixed conforming method.  相似文献   

2.
Discretizing partial differential equations by an implicit solving technique ultimately leads to a linear system of equations that has to be solved. The number of globally coupled unknowns is especially large for discontinuous Galerkin (DG) methods. It can be reduced by using hybridized discontinuous Galerkin (HDG) methods, but still efficient linear solvers are needed. It has been shown that, if hierarchical basis functions are used, a hierarchical scale separation (HSS) ansatz can be an efficient solver. In this work, we couple the HDG method with an HSS solver to solve a scalar nonlinear problem. It is validated by comparing the results with results obtained by GMRES with ILU(3) preconditioning as linear solver. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
This paper analyzes a parareal approach based on discontinuous Galerkin (DG) method for the time-dependent Stokes equations. A class of primal discontinuous Galerkin methods, namely variations of interior penalty methods, are adopted for the spatial discretization in the parareal algorithm (we call it parareal DG algorithm). We study three discontinuous Galerkin methods for the time-dependent Stokes equations, and the optimal continuous in time error estimates for the velocities and pressure are derived. Based on these error estimates, the proposed parareal DG algorithm is proved to be unconditionally stable and bounded by the error of discontinuous Galerkin discretization after a finite number of iterations. Finally, some numerical experiments are conducted which confirm our theoretical results, meanwhile, the efficiency of the parareal DG algorithm can be seen through a parallel experiment.  相似文献   

4.
A discontinuous Galerkin (DG) finite‐element interior calculus is used as a common framework to describe various DG approximation methods for second‐order elliptic problems. Using the framework, symmetric interior‐penalty methods, local discontinuous Galerkin methods, and dual‐wind discontinuous Galerkin methods will be compared by expressing all of the methods in primal form. The penalty‐free nature of the dual‐wind discontinuous Galerkin method will be both motivated and used to better understand the analytic properties of the various DG methods. Consideration will be given to Neumann boundary conditions with numerical experiments that support the theoretical results. Many norm equivalencies will be derived laying the foundation for applying dual‐winding techniques to other problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We present a streamline diffusion shock capturing spacetime discontinuous Galerkin (DG) method to approximate nonlinear systems of conservation laws in several space dimensions. The degrees of freedom are in terms of the entropy variables and the numerical flux functions are the entropy stable finite volume fluxes. We show entropy stability of the (formally) arbitrarily high order accurate method for a general system of conservation laws. Furthermore, we prove that the approximate solutions converge to the entropy measure valued solutions for nonlinear systems of conservation laws. Convergence to entropy solutions for scalar conservation laws and for linear symmetrizable systems is also shown. Numerical experiments are presented to illustrate the robustness of the proposed schemes.  相似文献   

6.
Discrete schemes for finding an approximate solution of the Dirichlet problem for a second-order quasilinear elliptic equation in conservative form are investigated. The schemes are based on the discontinuous Galerkin method (DG schemes) in a mixed formulation and do not involve internal penalty parameters. Error estimates typical of DG schemes with internal penalty are obtained. A new result in the analysis of the schemes is that they are proved to satisfy the Ladyzhenskaya-Babuska-Brezzi condition (inf-sup) condition.  相似文献   

7.
Single crystal viscoplasticity, with a regularization technique for the power law, is presented and implemented into a discontinuous Galerkin (DG) framework. Although single crystal plasticity has been extensively studied, its examination with the regularization method in combination with a DG formulation leads to a numerically efficient and robust model. The performance of the DG framework in crystal viscoplasticity is shown by an example. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Abstract

Several discontinuous Galerkin (DG) methods are introduced for solving a frictional contact problem with normal compliance, which is modeled as a quasi-variational inequality. Consistency, boundedness, and stability are established for the DG methods. Two numerical examples are presented to illustrate the performance of the DG methods.  相似文献   

9.
In this paper, we study spatially semi‐discrete and fully discrete schemes to numerically solve a hyperbolic variational inequality, with discontinuous Galerkin (DG) discretization in space and finite difference discretization in time. Under appropriate regularity assumptions on the solution, a unified error analysis is established for four DG schemes, which reaches the optimal convergence order for linear elements. A numerical example is presented, and the numerical results confirm the theoretical error estimates.  相似文献   

10.
Four primal discontinuous Galerkin methods are applied to solve reactive transportproblems, namely, Oden-Babuska-Baumann DG (OBB-DG), non-symmetric interior penaltyGalerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interiorpenalty Galerkin (IIPG). A unified a posteriori residual-type error estimation is derivedexplicitly for these methods. From the computed solution and given data, explicit esti-mators can be computed efficiently and directly, which can be used as error indicators foradaptation. Unlike in the reference [10], we obtain the error estimators in L~2 (L~2) norm byusing duality techniques instead of in L~2 (H~1) norm.  相似文献   

11.
This paper concerns itself with the development of an a priori error analysis of an eddy current problem when applying the well‐known hybridizable discontinuous Galerkin (HDG) method. Up to the authors' knowledge, this kind of theoretical result has not been proved for this kind of problems. We consider nontrivial domains and heterogeneous media which contain conductor and insulating materials. When dealing with these domains, it is necessary to impose the divergence‐free condition explicitly in the insulator, what is done by means of a suitable Lagrange multiplier in that material. In the end, we deduce an equivalent HDG formulation that includes as unknowns the tangential and normal trace of a vector field. This represents a reduction in the degrees of freedom when compares with the standard DG methods. For this scheme, we conduct a consistency and local conservative analysis as well as its unique solvability. After that, we introduce suitable projection operators that help us to deduce the expected a priori error estimate, which provides estimated rates of convergence when additional regularity on the exact solution is assumed.  相似文献   

12.
A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on...  相似文献   

13.
In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element approximation to linear parabolic optimal control problems. For the state variables and the co-state variables, the discontinuous finite element method is used for the time discretization and the Raviart-Thomas mixed finite element method is used for the space discretization. We do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control. We derive a priori error estimates for the lowest order mixed DG finite element approximation. Moveover, for the element of arbitrary order in space and time, we derive a posteriori $L^2(0, T ;L^2(Ω))$ error estimates for the scalar functions, assuming that only the underlying mesh is static. Finally, we present an example to confirm the theoretical result on a priori error estimates.  相似文献   

14.
A linearized backward Euler Galerkin-mixed finite element method is investigated for the time-dependent Ginzburg-Landau (TDGL) equations under the Lorentz gauge. By introducing the induced magnetic field σ = c u r l A as a new variable, the Galerkin-mixed FE scheme offers many advantages over conventional Lagrange type Galerkin FEMs. An optimal error estimate for the linearized Galerkin-mixed FE scheme is established unconditionally. Analysis is given under more general assumptions for the regularity of the solution of the TDGL equations, which includes the problem in two-dimensional nonconvex polygons and certain three dimensional polyhedrons, while the conventional Galerkin FEMs may not converge to a true solution in these cases. Numerical examples in both two and three dimensional spaces are presented to confirm our theoretical analysis. Numerical results show clearly the efficiency of the mixed method, particularly for problems on nonconvex domains.  相似文献   

15.
Numerical Algorithms - A parabolic convection-diffusion-reaction problem is discretized by the non-symmetric interior penalty Galerkin (NIPG) method in space and discontinuous Galerkin (DG) method...  相似文献   

16.
In this article, we propose a combined hybrid discontinuous mixed finite element method for miscible displacement problem with local discontinuous Galerkin method. Here, to obtain more accurate approximation and deal with the discontinuous case, we use the hybrid mixed element method to approximate the pressure and velocity, and use the local discontinuous Galerkin finite element method for the concentration. Compared with other combined methods, this method can improve the efficiency of computation, deal with the discontinuous problem well and keep local mass balance. We study the convergence of this method and give the corresponding optimal error estimates in L(L2) for velocity and concentration and the super convergence in L(H1) for pressure. Finally, we also present some numerical examples to confirm our theoretical analysis.  相似文献   

17.
This article proves the existence and uniqueness of the solution obtained by the hybridizable discontinuous Galerkin (HDG) method of the fractional Volterra‐Fredholm integro differential equation. The method based on local solvers and transmission condition is applied to the equation using two auxiliary variables. The form of the equation is amenable for achieving the solvability criteria of the problem according to the HDG method. We also calculate a numerical solution of the problem whose exact solution is taken as a smooth or fractional function. This results in a tridiagonal, symmetric, and positive definite stiffness matrix.  相似文献   

18.
This article presents a space–time discontinuous Galerkin (DG) finite element method for linear convection-dominated Sobolev equations. The finite element method has basis functions that are continuous in space and discontinuous in time, and variable spatial meshes and time steps are allowed. In the discrete intervals of time, using properties of the Radau quadrature rule, eliminates the restriction to space–time meshes of convectional space–time Galerkin methods. The existence and uniqueness of the approximate solution are proved. An optimal priori error estimate in L(H1) is derived. Numerical experiments are presented to confirm theoretical results.  相似文献   

19.
This paper focuses on the adaptive discontinuous Galerkin (DG) methods for the tempered fractional (convection) diffusion equations. The DG schemes with interior penalty for the diffusion term and numerical flux for the convection term are used to solve the equations, and the detailed stability and convergence analyses are provided. Based on the derived posteriori error estimates, the local error indicator is designed. The theoretical results and the effectiveness of the adaptive DG methods are, respectively, verified and displayed by the extensive numerical experiments. The strategy of designing adaptive schemes presented in this paper works for the general PDEs with fractional operators.  相似文献   

20.
We consider a numerical method for the Oldroyd‐B model of viscoelastic fluid flows by a combination of the weighted least‐squares (WLS) method and the discontinuous Galerkin (DG) finite element method. The constitutive equation is decoupled from the momentum and continuity equations, and the approximate solution is computed iteratively by solving the Stokes problem and a linearized constitutive equation using WLS and DG, respectively. An a priori error estimate for the WLS/DG method is derived and numerical results supporting the estimate are presented. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号