首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Indacenodithiophene (IDT) derivatives are kinds of the most representative and widely used cores of small molecule acceptors (SMAs) in organic solar cells (OSCs). Here we systematically investigate the influence of end-group fluorination density and position on the photovoltaic properties of the IDT-based SMAs IDIC-nF (n = 0, 2, 4). The absorption edge of IDIC-nF red-shifts with the π-π stacking and crystallinity improvement, and their electronic energy levels downshift with increasing n. Due to the advantages of Jsc and FF as well as acceptable Voc, the difluorinated IDIC-2F acceptor based OSCs achieve the highest power conversion efficiency (PCE) of 13%, better than the OSC devices based on IDIC and IDIC-4F as acceptors. And the photovoltaic performance of the PTQ10: IDIC-2F OSCs is insensitive to the active layer thickness: PCE still keep high values of 12.00% and 11.46% for the devices with active layer thickness of 80 and 354 nm, respectively. This work verifies that fine and delicate modulation of the SMAs molecular structure could optimize photovoltaic performance of the corresponding OSCs. Meanwhile, the thickness-insensitivity property of the OSCs has potential for large-scale and printable fabrication technology.  相似文献   

2.
《中国化学快报》2021,32(9):2904-2908
With the emergence of non-fullerene acceptors (NFAs), the power conversion efficiencies (PCEs) of all-small-molecule organic solar cells (ASM-OSCs) have been significantly improved. However, due to the strong crystallinities of small molecules, it is much more challenging to obtain the ideal phase separation morphology and efficient charge transport pathways for ASM-OSCs. Here, a high-efficiency ternary ASM-OSC has been successfully constructed based on H11/IDIC-4F system by introduction of IDIC with a similar backbone as IDIC-4F but weak crystallinity. Notably, the addition of IDIC has effectively suppressed large-scale phase aggregation and optimized the morphology of the blend film. More importantly, the molecular orientation has also been significantly adjusted, and a mixed face-on and edge-on orientation has formed, thus establishing a more favorable three-dimensional (3D) charge pathways in the active layer. With these improvements, the enhanced short-circuit current density (JSC) and fill factor (FF) of the ternary system have been achieved. In addition, because of the high lowest unoccupied molecular orbital (LUMO) energy level of IDIC as well as the alloyed structure of the IDIC and IDIC-4F, the promoted open circuit voltage (VOC) of the ternary system has also been realized.  相似文献   

3.
有机太阳能电池具有成本低廉、质量轻、柔性可折叠以及可以大面积印刷等优点,受到广泛关注。但与无机太阳能电池相比,其能量损失较高。在有机光伏分子中引入氟原子是一种有效提高器件性能的分子设计策略。本文从氟原子特点出发,总结了氟化给体、π桥和受体单元对分子能级调控和形貌优化的作用,阐明了氟原子降低能量损失的内在原因;并通过代表性分子设计实例,简要阐述了氟化策略在高效聚合物给体材料、高效可溶性小分子给体材料以及高效非富勒烯受体材料中的应用;最后,对氟化策略的应用进行了总结,并展望了未来的研究方向。  相似文献   

4.
Three small-molecule donors based on dithieno [2,3-d:2’,3 ’-d’]-benzo[1,2-b:4,5-b’] dithiophene(DTBDT)unit were designed and synthesized by side chain regulation with chlorinated or/and sulfurated substitutions(namely ZR1,ZR1-Cl,and ZR1-S-Cl respectively),along with a crystalline non-fullerene acceptor IDIC-4 Cl with a chlorinated 1,1-dicyanomethylene-3-indanone(IC) end group.Energy levels,molar extinction coefficients and crystallinities of three donor molecules can be effectively altered by combining chlorination and sulfuration strategies.Especially,the ZR1-S-Cl exhibited the best absorption ability,lowest higher occupied molecular orbital(HOMO) energy level and highest crystallinity among three donors,resulting in the corresponding all-small-molecule organic solar cells to produce a high power conversion efficiency(PCE) of 12.05% with IDIC-4 Cl as an acceptor.  相似文献   

5.
Li  Kun  Wu  Yishi  Li  Xuemei  Fu  Hongbing  Zhan  Chuanlang 《中国科学:化学(英文版)》2020,63(4):490-496
Quaternary blended organic solar cells utilize four blended material components(one donor plus three acceptors, two donors and two acceptors, or three donors plus one acceptor) as the active layer materials. The use of four material components allows us to have more material selections and more mechanism choices to improve the photon-to-electron conversion efficiency. In this contribution, we present a new case of quaternary material system, that shows 17.1% efficiency obtained by adding IDIC and PC_(71)BM as the guest acceptors of the host binary of PM6:Y6. The lowest unoccupied molecular orbital(LUMO) levels of IDIC and PC_(71)BM are both higher than that of Y6, which is one reason to obtain increased open-circuit voltage(V_(oc)) in the quaternary device. Upon introduction of IDIC and PC_(71)BM as the acceptor guests, the hole and electron mobilities are both increased, which contributes to the increased short-circuit current-density(J_(sc)). Effects of the weight ratios of the three acceptor components are investigated, which demonstrates that the increased hole and electron mobilities, the accelerated hole-transfer, and the reduced monomolecular recombination are the factors contributing to the increased J_(sc)and fill-factor. This case of quaternary device demonstrates the applicability of the quaternary strategy in increasing the device functions and hence the efficiencies in the field of organic photovoltaic cells.  相似文献   

6.
Optimizing the components and morphology within the photoactive layer of organic solar cells(OSCs) can significantly enhance their power conversion efficiency(PCE). A new A-D-A type non-fullerene acceptor IDMIC-4F is designed and synthesized in this work, and is employed as the third component to prepare high performance ternary solar cells. IDMIC-4F can form fibrils after solution casting, and the presence of this fibrillar structure in the PBDB-T-2F:BTP-4F host confines the growth of donors and acceptors into fine domains, as well as acting as transport channels to enhance electron mobility. Single junction ternary devices incorporating 10 wt% IDMIC-4F exhibit enhanced light absorption and balanced carrier mobility, and achieve a maximum PCE of 16.6% compared to 15.7% for the binary device, which is a remarkable efficiency for OSCs reported in literature. This non-fullerene acceptor fibril network strategy is a promising method to improve the photovoltaic performance of ternary OSCs.  相似文献   

7.
Fan  Baobing  Zhang  Difei  Li  Meijing  Zhong  Wenkai  Zeng  Zhaomiyi  Ying  Lei  Huang  Fei  Cao  Yong 《中国科学:化学(英文版)》2019,62(6):746-752
To achieve high photovoltaic performance of bulk hetero-junction organic solar cells(OSCs), a range of critical factors including absorption profiles, energy level alignment, charge carrier mobility and miscibility of donor and acceptor materials should be carefully considered. For electron-donating materials, the deep highest occupied molecular orbital(HOMO) energy level that is beneficial for high open-circuit voltage is much appreciated. However, a new issue in charge transfer emerges when matching such a donor with an acceptor that has a shallower HOMO energy level. More to this point, the chemical strategies used to enhance the absorption coefficient of acceptors may lead to increased molecular crystallinity, and thus result in less controllable phase-separation of photoactive layer. Therefore, to realize balanced photovoltaic parameters, the donor-acceptor combinations should simultaneously address the absorption spectra, energy levels, and film morphologies. Here, we selected two non-fullerene acceptors, namely BTPT-4F and BTPTT-4F, to match with a wide-bandgap polymer donor P2F-EHp consisting of an imidefunctionalized benzotriazole moiety, as these materials presented complementary absorption and well-matched energy levels. By delicately optimizing the blend film morphology, we demonstrated an unprecedented power conversion efficiency of over 16% for the device based on P2F-EHp:BTPTT-4F, suggesting the great promise of materials matching toward high-performance OSCs.  相似文献   

8.
有机小分子电子受体材料的侧基能够影响异质结有机太阳能电池的给体/受体匹配和器件性能。我们设计并合成了一个硼原子带有噻吩侧基的有机硼小分子(MBN-Th)。该分子的LUMO离域在整个骨架上,HOMO定域在中心核上,其独特的电子结构使该分子具有两个强的吸收峰(波长分别为490和726nm),因此分子具有宽的吸收光谱和强的太阳光吸收能力。与苯基侧基相比,噻吩侧基使分子的HOMO能级下移0.1 eV,LUMO能级保持不变,进而引起分子带隙减小和吸收光谱蓝移20nm。基于该有机硼小分子受体材料的异质结有机太阳能电池,实现了4.21%的能量转化效率和300–850nm的宽响应光谱。实验结果表明,硼原子上的噻吩侧基是调控有机硼小分子光电性质的有效方法,可以用于有机硼小分子受体材料的设计。  相似文献   

9.
In the molecular optimizations of non-fullerene acceptors (NFAs), extending the central core can tune the energy levels, reduce nonradiative energy loss, enhance the intramolecular (donor-acceptor and acceptor-acceptor) packing, facilitate the charge transport, and improve device performance. In this study, a new strategy was employed to synthesize acceptors featuring conjugation-extended electron-deficient cores. Among these, the acceptor CH-BBQ, embedded with benzobisthiadiazole, exhibited an optimal fibrillar network morphology, enhanced crystallinity, and improved charge generation/transport in blend films, leading to a power conversion efficiency of 18.94 % for CH-BBQ-based ternary organic solar cells (OSCs; 18.19 % for binary OSCs) owing to its delicate structure design and electronic configuration tuning. Both experimental and theoretical approaches were used to systematically investigate the influence of the central electron-deficient core on the properties of the acceptor and device performance. The electron-deficient core modulation paves a new pathway in the molecular engineering of NFAs, propelling relevant research forward.  相似文献   

10.
何畅  侯剑辉 《物理化学学报》2018,34(11):1202-1210
有机太阳能电池(OPV),具有质量轻、可成本低制备等优势,是一种具有实际应用潜力的光伏技术。有机太阳能电池活性层可以由共轭聚合物或溶液可加工的小分子材料(给体与受体)共混组成。由于小分子材料具有明确的分子结构,纯度可控及无批次差别影响的特点;并结合近年来非富勒烯小分子受体的快速发展,使得非富勒烯全小分子(NF-SM-OPV)电池研究受到广泛关注。由于大部分A-D-A型非富勒烯受体分子具有各向异性的特点,这使激子解离和电荷传输,很大程度上受分子间堆积方式的影响,导致非富勒烯全小分子电池活性层形貌调控更加复杂。虽然非富勒烯小分子太阳能电池具有非富勒烯受体材料和小分子材料的双重优势,但高效率非富勒烯小分子太阳能电池的制备,仍具有很大挑战。因此,本文总结近年来高性能非富勒烯小分子太阳能电池的相关进展。着重介绍针对非富勒烯受体的给体小分子材料设计工作,并在此基础上近一步讨论非富勒烯小分子太阳能电池面临的挑战与展望。  相似文献   

11.
Due to the intrinsically flexible molecular skeletons and loose aggregations, organic semiconductors, like small molecular acceptors (SMAs) in organic solar cells (OSCs), greatly suffer from larger structural/packing disorders and weaker intermolecular interactions comparing to their inorganic counterparts, further leading to hindered exciton diffusion/dissociation and charge carrier migration in resulting OSCs. To overcome this challenge, complete peripheral fluorination was performed on basis of a two-dimensional (2D) conjugation extended molecular platform of CH-series SMAs, rendering an acceptor of CH8F with eight fluorine atoms surrounding the molecular backbone. Benefitting from the broad 2D backbone, more importantly, strengthened fluorine-induced secondary interactions, CH8F and its D18 blends afford much enhanced and more ordered molecular packings accompanying with enlarged dielectric constants, reduced exciton binding energies and more obvious fibrillary networks comparing to CH6F controls. Consequently, D18:CH8F-based OSCs reached an excellent efficiency of 18.80 %, much better than that of 17.91 % for CH6F-based ones. More excitingly, by employing D18-Cl that possesses a highly similar structure to D18 as a third component, the highest efficiency of 19.28 % for CH-series SMAs-based OSCs has been achieved so far. Our work demonstrates the dramatical structural multiformity of CH-series SMAs, meanwhile, their high potential for constructing record-breaking OSCs through peripheral fine-tuning.  相似文献   

12.
Novel A-D-A-type small molecule donors employ thiophene bridge and F-substitution to improve the power conversion efficiency in organic solar cell.  相似文献   

13.
徐翔  李坤  魏擎亚  袁俊  邹应萍 《化学进展》2021,33(2):165-178
随着给/受体材料的不断发展,有机太阳能电池的器件效率不断取得进展.特别是非富勒受体分子Y6的出现,使单结有机太阳能电池的效率突破了15%.Y6已经应用到了有机太阳能电池各个方面并且极大提升了其性能.本综述主要总结了Y6在二元、三元和四元、逐层印刷、柔性、叠层和半透明等有机太阳能电池方面的研究情况,以及基于Y6三线态的有...  相似文献   

14.
In the last few decades, organic solar cells (OSCs) have drawn broad interest owing to their advantages such as being low cost, flexible, semitransparent, non-toxic, and ideal for roll-to-roll large-scale processing. Significant advances have been made in the field of OSCs containing high-performance active layer materials, electrodes, and interlayers, as well as novel device structures. Particularly, the innovation of active layer materials, including novel acceptors and donors, has contributed significantly to the power conversion efficiency (PCE) improvement in OSCs. In this review, high-performance acceptors, containing fullerene derivatives, small molecular, and polymeric non-fullerene acceptors (NFAs), are discussed in detail. Meanwhile, highly efficient donor materials designed for fullerene- and NFA-based OSCs are also presented. Additionally, motivated by the incessant developments of donor and acceptor materials, recent advances in the field of ternary and tandem OSCs are reviewed as well.  相似文献   

15.
Benzothiadiazole(BT) is an electron-deficient unit with fused aromatic core, which can be used to construct conjugated polymers for application in organic solar cells(OSCs). In the past twenty years, huge numbers of conjugated polymers based on BT unit have been developed,focusing on the backbone engineering(such as by using different copolymerized building blocks), side chain engineering(such as by using linear or branch side units), using heteroatoms(such as F, O and S atoms, and CN group), etc. These modifications enable BT-polymers to exhibit distinct absorption spectra(with onset varied from 600 nm to 1000 nm), different frontier energy levels and crystallinities. As a consequence, BT-polymers have gained much attention in recent years, and can be simultaneously used as electron donor and electron acceptor in OSCs, providing the power conversion efficiencies(PCEs) over 18% and 14% in non-fullerene and all-polymer OSCs. In this article, we provide an overview of BTpolymers for OSCs, from donor to acceptor, via selecting some typical BT-polymers in different periods. We hope that the summary in this article can invoke the interest to study the BT-polymers toward high performance OSCs, especially with thick active layers that can be potentially used in large-area devices.  相似文献   

16.
The concurrent enhancement of short-circuit current (JSC) and open-circuit voltage (VOC) is a key problem in the preparation of efficient organic solar cells (OSCs). In this paper, we report efficient and stable OSCs based on an asymmetric non-fullerene acceptor (NFA) IPC-BEH-IC2F. The NFA consists of a weak electron-donor core dithienothiophen[3,2-b]-pyrrolobenzothiadiazole (BEH) and two kinds of strong electron-acceptor (A) units [9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile (IPC) with a tricyclic fused system and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC2F)]. For comparison, the symmetric NFAs IPC-BEH-IPC and IC2F-BEH-IC2F were characterised. The kind of flanking A unit significantly affects the light absorption features and electronic structures of the NFAs. The asymmetric IPC-BEH-IC2F has the highest extinction coefficient among the three NFAs owing to its strong dipole moment and highly crystalline feature. Its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels lie between those of the IPC-BEH-IPC and IC2F-BEH-IC2F molecules. The IPC group also promotes molecular packing through the tricyclic π-conjugated system and achieves increased crystallinity compared to that of the IC2F group. Inverted-type photovoltaic devices based on p-type polymer:NFA blends with PBDB-T and PM6 polymers as p-type polymers were fabricated. Among all these devices, the PBDB-T:IPC-BEH-IC2F blend device displayed the best photovoltaic properties because the IPC unit provides balanced electronic and morphological characteristics. More importantly, the PBDB-T:IPC-BEH-IC2F-based device exhibited the best long-term stability owing to the strongly interacting IPC moiety and the densely packed PBDB-T:IPC-BEH-IC2F film. These results demonstrate that asymmetric structural modifications of NFAs are an effective way for simultaneously improving the photovoltaic performance and stability of OSCs.

A 9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile (IPC) moiety in asymmetric non-fullerene acceptors promotes the formation of a densely packed crystalline structure, enabling efficient and long-term stable organic solar cells.  相似文献   

17.
Among various perylenediimide(PDI)-based small molecular non-fullerene acceptors(NFAs), PDI dimer can effectively avoid the excessive aggregation of single PDI and improve the photovoltaic performance.However, the twist of perylene core in PDI dimer will destroy the effective conjugation. Thus, ring annulation of PDI dimer is a feasible method to balance the film quality and electron transport, but the systematic study has attracted few attentions. Herein, we choose a simple vinylene linked PDI dimer,V-PDI_2, and then conduct further studies on the structure-property-performance relationship of four kinds of derived fused-PDI dimers, namely V-TDI_2, V-FDI_2, V-PDIS_2 and V-PDISe2 respectively. The former two are incorporated thianaphthene and benzofuran at the inside bay positions, and the latter two are fused thiophene and selenophene at the outside bay positions, respectively. Theoretical calculations reveal the inside-and outside-fused structures largely affect the skeleton configuration, the former two tend to be planar structure and the latter two maintain the distorted backbone. The photovoltaic characterizations show that the inside-fused PDI dimers offer high open circuit voltage(V_(OC)), while the outside-fused PDI dimers afford large short-circuit current density(J_(SC)). This variation tendency results from the reasonably tunable energy levels, light absorption, molecular crystallinity and film morphology. As a result,PBDB-T:V-PDISe2 device exhibits the highest power conversion efficiency(PCE) of 6.51%, and PBDB-T:VFDI_2 device realizes the highest V_(OC) of 1.00 V. This contribution indicates that annulation of PDI dimers in outside or inside bay regions is a feasible method to modulate the properties of PDI-based non-fullerene acceptors.  相似文献   

18.
Zhang  Xin  Ding  Yunqian  Feng  Huanran  Gao  Huanhuan  Ke  Xin  Zhang  Hongtao  Li  Chenxi  Wan  Xiangjian  Chen  Yongsheng 《中国科学:化学(英文版)》2020,63(12):1799-1806
Science China Chemistry - Side chain engineering plays a substantial role for high-performance organic solar cells (OSCs). Herein, a series of non-fullerene acceptor (NFA) molecules with A-D-A...  相似文献   

19.
Ma  Ruijie  Liu  Tao  Luo  Zhenghui  Guo  Qing  Xiao  Yiqun  Chen  Yuzhong  Li  Xiaojun  Luo  Siwei  Lu  Xinhui  Zhang  Maojie  Li  Yongfang  Yan  He 《中国科学:化学(英文版)》2020,63(3):325-330
Power conversion efficiency(PCE) of single-junction polymer solar cells(PSCs) has made a remarkable breakthrough recently.Plenty of work was reported to achieve PCEs higher than 16% derived from the PM6:Y6 binary system.To further increase the PCEs of binary OSCs incorporating small molecular acceptor(SMA) Y6,we substituted PM6 with PM7 due to the deeper highest occupied molecular orbital(HOMO) of PM7.Consequently,the PM7:Y6 has achieved PCEs as high as 17.0% by the hotcast method,due to the improved open-circuit voltage(V_(OC)).Compared with PM6,the lower HOMO of PM7 increases the gap between E_(LUMO-donor) and E_(HOMO-acceptor),which is proportional to V_(OC).This research provides a high PCE for single-junction binary PSCs,which is meaningful for device fabrication related to PM7 and commercialization of PSCs.  相似文献   

20.
The power conversion efficiencies(PCEs) of organic solar cells(OSCs) have reached 18% recently,which have already met the demand of practical application.However,these outstanding results were generally achieved with donor-acceptor(D-A) type copolymer donors,which can hardly fulfill the low-cost largescale production due to their complicated synthesis processes.Therefore,developing polymer donors with simple chemical structures is urgent for realizing low-cost OSCs.Polythiophene(PT) derivatives are currently regarded as promising candidates for such kind of donor materials,which has been illustrated in many works.In this work,two new alkylthio substituted PT derivatives,P301 and P302,were synthesized and tested as donors in the OSCs using Y5 as the accepto r.In comparison,the introduction of fluorine atoms on the backbone of P302 can not only downshift the energy levels,but also greatly improve the phase separation morphologies of the active layers,which is ascribed to the enhanced aggregation effect and the reduced miscibility with the non-fullerene acceptor.As a result,the P302:Y5-based OSC exhibits a significantly improved PCE of 9.65% than that of P301:Y5-based one,indicating the important role of fluorination in the construction of efficient PT derivative donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号