首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
三甲基硅基(TMS)广泛存在于有机化合物中,并且在有机合成中有重要的应用。硅杂环化合物因其独特的理化性质而被广泛地应用于有机合成化学、材料化学和药物化学中。因此,将含有TMS基团的化合物直接用于硅杂环化合物合成的研究具有重要的意义。在有机合成化学中,碳硅键的切断是一个非常重要的过程。通过化学计量的有机镁或有机锂等有机金属试剂对C(sp3)-Si键进行切断是碳硅键活化的经典方法,然而该方法的反应条件苛刻,应用有限。过渡金属催化的反应能够在较温和的条件下实现C(sp3)-Si键的切断,这为进一步官能团化C(sp3)-Si键提供了一种新方向,同时也是一种高效构建硅杂环化合物的新方法。目前过渡金属催化活化C(sp3)-Si键的研究主要集中在具有张力环或一些具有特定结构的底物中,对于催化活化惰性C(sp3)-Si键的研究仍然是一个具有挑战性的课题。本文结合本课题组的工作综述了近年来过渡金属催化的TMS中C(sp3)-Si键的方法。  相似文献   

2.
有机硅化合物在有机合成、材料化学和药物化学中都有广泛应用.因此,其自身的合成方法学在近年来广受关注.从原子经济性的角度出发,选择性的C(sp3)–H键切断是一种高效经济的合成策略.硅烷基单元在有机化合物中广泛存在,通过对硅烷基中的C(sp3)–H键直接官能团化来合成新的有机硅化合物是一种十分有前景的合成方法.近年来,过渡金属催化的C(sp3)–H键活化成为有机合成研究的热点领域.与肟基、唑啉、吡啶基、酰胺基、羧酸酯基等官能团或是与氧、氮或硫等杂原子相连的C(sp3)–H键的活化研究已有许多报道,但是与硅相邻的C(sp3)–H键活化研究报道很少.本文综述了近年来过渡金属催化的硅烷基C(sp3)–H键切断的研究进展.  相似文献   

3.
正硅杂环化合物是一类重要的有机硅化合物.它们通常具有独特的化学、物理、生理和材料学性质.基于此,含硅杂环化合物的高效合成一直是有机合成化学中的研究热点~([1]).其中,硅杂环丁烷及其衍生物(SCB)由于其高的环张力(150k J/mol)以及较强的路易斯酸性而受到广泛关注~([2]).然而,发展一个过渡金属催化的SCB参  相似文献   

4.
过渡金属催化导向碳氢键活化与不饱和分子的环化反应已成为合成复杂碳环和杂环化合物的高效途径,但反应中往往需要额外加入化学计量化学氧化剂来实现反应循环.电化学有机合成可利用电流代替昂贵、有毒的化学氧化剂,是一种环境友好的绿色合成手段.近年来,电化学有机合成与过渡金属(如Pd、Ni、Co、Ru、Cu、Rh、Ir等)催化碳氢键活化的结合取得了显著的进展.重点介绍了过渡金属催化导向C—H活化与炔烃、烯烃、一氧化碳和异氰等不饱和分子的电氧化环化反应的最新进展,并对该领域未来发展方向进行了展望.  相似文献   

5.
含氧结构骨架普遍存在于天然产物和生物活性小分子中,同时在有机合成中是一类重要的合成子,因此,含氧化合物的合成一直是科学研究的热点.过渡金属催化氧气氧插入反应策略是一类新颖而又高效构建碳碳键和碳杂键的方法.随着该类方法的应用和发展,它已成为含氧杂原子化合物最重要的合成方法之一.在前人的工作基础上,同时结合本课题组之前的工作,探讨了氧气环境条件下过渡金属催化醛酮类、烯炔烃、芳烃类及杂环芳烃类等参与的氧插入反应及其在合成醇类、酯类、酰胺类和含氧杂环类等领域的新应用;综述了基于C—H键活化以及C—C键断裂等方式参与过渡金属催化氧气氧插入反应过程的研究新进展.过渡金属催化剂在氧气氧化下,可以引发氧自由基历程的氧插入反应,并实现氧自由基的高效和高选择性插入.该类反应具有条件温和、操作简单、绿色环保和高原子经济性等特点.  相似文献   

6.
有机硅烷化合物在药物化学、材料科学和有机合成中占据着重要地位,过渡金属催化C-H键的直接硅烷化反应作为合成有机硅烷最简洁高效的方法之一,近年来发展迅速.主要综述了2015年以来过渡金属催化C-H键硅烷化反应的最新研究进展.  相似文献   

7.
杂环化合物广泛的存在于天然产物、药物、有机材料以及其他官能团化的分子中.所以发展杂环合成的新的方法学有着极其重要的意义.在所有的有机合成策略中,过渡金属催化的反应,由于其相对温和的反应条件和高效的原子利用率,无疑是一种理想的选择.这其中,过渡金属催化的羰基化反应又是一个比较理想的反应.自从20世纪30年代首度报道以来,羰基化反应经历了长足的发展.时至今日,各种羰基化反应类型都得到发展.反应底物也囊括了卤代芳烃、烯烃、炔烃及其它未经活化的化合物.羰基来源也从一氧化碳气体拓展到了其他原位释放一氧化碳的化合物,例如甲酸、醇、醛、生物质等.对我们课题组在过去5年中在过渡金属催化的羰基化合成杂环及杂环的官能团化领域的工作进行了总结.使用铜、钯、铑、钌和铱作为催化剂,基于碳卤键和碳氢键的活化,各种杂环化合物都能被高效的合成.  相似文献   

8.
通过无过渡金属催化的C—H官能团化反应构筑C—杂原子键的研究发展迅速,已经成为一种合成高度官能团化天然产物或生理活性分子的绿色、高效的合成策略,包括氨基化、烷氧基化、巯基化、硒基化、卤化化合物等.特别是,咪唑并杂环的C—杂原子化反应被视为最重要的一类反应,因为向杂环分子中引入杂原子基团可以产生一类新的生物活性化合物.重点介绍了近几年无过渡金属催化的在咪唑并杂环上形成C—杂原子键的研究进展,进一步阐述该类反应的机理.  相似文献   

9.
本文综述了环上只含有一个硅原子的硅杂六元环化合物在有机合成方法学方面的进展。介绍了通过α,ω-双金属试剂的关环反应、硅烯参与的[4+2]环加成反应、生成C—Si键的关环反应、生成C—C键的关环反应、硅杂环扩环反应等来合成硅杂六元环化合物,总结了硅杂环己烷、硅杂环己烯以及硅杂环己二烯等不同结构化合物的常见合成方法,为促进硅杂六元环化合物在有机合成化学和材料科学方面的进一步应用提供了基础。  相似文献   

10.
刘霞  匡春香  苏长会 《化学学报》2022,80(8):1135-1151
1,2,3-三氮唑化合物是一类具有重要生理活性的含氮杂环化合物, 其在医药、农药、材料科学等领域都具有广泛的应用. 不断开发基于三氮唑骨架的新型结构, 寻找新型高效的合成三氮唑衍生物的方法具有重要的意义和应用价值. 过渡金属催化的C—H键活化策略具有操作简便、效率高、三废少等优点, 是现代有机合成中高效构筑C—C键和C—X键的强大工具. 近年来, 过渡金属催化的三氮唑导向的C—H官能团化反应受到科学工作者的广泛关注, 该方法以不同结构的1,2,3-三氮唑作为导向基团, 在不同反应条件下通过直接活化C—H键来构建新的C—C键和C—X键, 高效合成复杂的三氮唑衍生物. 综述了近年来1,2,3-三氮唑导向下过渡金属催化的C—H键官能团化反应研究进展, 按照成键类型(碳-碳键、碳-杂键以及环化反应)对这些反应进行了梳理和总结, 并对今后该领域的发展进行了展望.  相似文献   

11.
邱頔  邱孟龙  马戎  张艳  王剑波 《化学学报》2016,74(6):472-487
重氮化合物是一类非常重要的有机合成中间体, 它在有机合成化学以及药物设计研发、化学生物学、材料化学等领域具有重要的应用价值. 传统的重氮化合物的转化反应类型包括了Wolff重排, 经由过渡金属卡宾或者类卡宾中间体的插入反应, 催化的环丙烷化反应, 以及近年来发展的过渡金属催化的经由卡宾中间体的交叉偶联反应等. 重氮化合物除了发生作为卡宾前体的经典反应之外, 它们还可以经由氮基团保留的转化过程, 在目标分子中保留重氮基团或者其它含氮原子的官能团. 该种策略提供了一种高效而选择性地构筑含氮功能分子、尤其是官能化的氮杂环的合成途径. 其中, 不对称的C-N键的选择性构筑, 以及不对称的氮杂环分子的组装, 仍然具有重要的合成价值和重大的挑战意义. 本篇综述根据反应的机理和类型, 将这部分研究工作分为六部分内容进行介绍.  相似文献   

12.
芳香偶氮化合物在有机染料、医药、蛋白探针和功能材料等领域应用广泛,高效构建偶氮功能化的芳烃衍生物是有机合成化学的研究热点领域之一.过渡金属催化偶氮基导向C(sp~2)—H键官能团化策略因可高区域选择性和高原子经济性地构建多样性芳基偶氮化合物而备受关注.对近年来过渡金属催化偶氮功能基导向的C—H键官能团化反应类型及相关反应机理予以论述,为后续研究提供参考.  相似文献   

13.
正共轭硅杂环化合物在太阳能电池、有机发光材料、荧光探针等领域都得到了广泛的关注和研究.其传统合成方法中因为往往需要计量的锂试剂或格氏试剂,官能团耐受性受到了极大的限制.近年来,包括北京大学化学与分子工程学院席振峰教授在内的一些科学家开拓的碳-硅键活化反应代表了一种构建含硅化合物的新方向.在此策略指引下,清华大学药学系何伟课题组设计了如下图所示的铑催化的串联分子内胺化/硅-碳(sp~3)键活化反应来快速高效合成共轭硅杂环化合物.研究发现,添加剂对该串联反应中关键的碳-硅键活化的化学选择性有重要的影响:在质子源(正辛醇)的作用下会发生硅-碳(sp~3)键活化得到共轭硅杂环化合物2,而在π酸(3,3-丙烯醛)存在时则发生硅-碳(sp~2)  相似文献   

14.
含N杂环结构广泛存在于具有生物活性的药物或天然产物骨架中.本文开发了一个高效合成含N杂环骨架的方法,这类方法在近年来一直是研究热点.在最近几年,过渡金属催化C–H键活化并随后与不饱和键发生环化反应被认为是一种环境友好且原子经济性高的构建功能化杂环的方法.在这些金属催化的体系中,三价铑催化与炔烃的环化反应体系,被认为是一种高效且有实际意义的合成含N杂环的体系.在这类体系,特别是构建六元环的体系中,炔烃通常作为一个C2合成子被广泛应用.为了克服这一局限性,Chang课题组和本课题组分别独立报道了通过三价铑催化,炔烃与芳烃硝酮偶联合成吲哚啉化合物,其中炔烃作为一个C1合成子参与反应.另一方面,本课题组还报道了炔丙醇与吡咯烷苯甲酰胺通过C–H键活化合成1-异色满酮结构,其中由于电子效应,芳基-铑物种对于炔烃的插入是在炔烃的2位.基于上述工作,本文希望通过置换炔丙醇中芳基与烷基的位置,使芳基-铑物种对于炔烃插入的方向发生改变,进而生成联烯中间体,然后发生环化反应生成五元环内酰胺结构.异吲哚啉酮骨架结构也是一类重要的含N杂环结构,广泛存在于多种天然产物及药物分子中,其合成方法受到广泛关注.尽管此前已有三价铑催化C–H官能团化的方法来构建异吲哚啉酮骨架结构,但通常需要活性极高或易爆的化合物作为反应底物.因此,本文报道一类以简单的炔丙醇与N-甲氧基苯甲酰胺作为起始原料,通过一步[4+1]环化合成异吲哚啉酮骨架结构.本文完成了32个不同官能团取代的异吲哚啉酮骨架结构的合成,反应均可以以中等到良好的收率得到目标产物.另外还进行了放大实验,结果表明可以以克级规模制备异吲哚啉酮化合物,反应剩余的Ag2CO3以及生成的单质银可以回收(收率78%).总之,我们将N-甲氧基苯甲酰胺与炔丙醇在三价铑催化作用下通过C–H键活化的方法环化高效合成N-取代的异吲哚啉酮骨架结构,且该骨架结构含有一个手性中心.催化体系温和,官能团容忍度好.  相似文献   

15.
王浩  许斌 《有机化学》2015,(3):588-602
近年来,过渡金属催化的C—H键官能团化反应引起了广泛的关注并得到迅速发展.作为一个不可替代的合成子,异腈已被广泛应用于合成各类含氮杂环化合物.本综述介绍了异腈参与的惰性键活化反应的最新研究进展及其在有机合成中的应用,包括异腈对C—H键或N—H键的插入反应以及异腈参与的自由基氧化成环反应等.  相似文献   

16.
胍(R1~NHC(=NR~2)NHR~3)为一类独特的三氮化合物,其结构单元广泛存在于天然产物和药物分子中.他们具有多样性生物活性,在药物和农药领域都有广泛应用;此外,其在有机合成和功能材料领域也有很高的应用价值.由于胍独特的结构和广泛的应用价值,其合成方法的研究已成为有机合成研究的一个热点.近年来不断有胍的新合成方法涌现,特别是高效的过渡金属催化合成方法.本文主要对近20年来发展的过渡金属催化构筑C—N键反应合成胍类化合物的方法进行综述,全面介绍各类胍化合物合成方法的研究现状,总结归纳不同过渡金属催化合成方法的规律、特点及不足,为过渡金属催化合成胍类化合物的研究提供帮助.  相似文献   

17.
异喹啉是非常重要的杂环化合物,广泛应用于有机合成中,也是构成药物和材料分子的核心骨架.很多异喹啉类的生物碱都由异喹啉基本骨架构成,它们都有一定药理活性和生物活性,包括抗真菌、抗癌、抗心律失常、阵痛麻醉和降血压等功效.迄今已知的含异喹啉骨架的生物碱超过1000种,是生物碱中最多的一类.传统的合成异喹啉的方法需要官能化的原料和强酸,反应条件比较苛刻,合成步骤繁琐.例如Larock课题组利用钯催化将邻溴官能化的亚胺与炔烃环化偶联,合成了一系列异喹啉化合物.而过渡金属催化合成异喹啉是一种能够有效合成多种取代基异喹啉的方法.在过去的几十年中,通过碳氢活化策略合成杂环化合物的方法得到迅猛发展,从而使得大量的芳基化合物都能作为反应的起始原料.尤其是铑、铱、钯、钌等过渡金属都能催化芳烃的碳氢活化,从而合成异喹啉化合物.Fagnou课题组最早报道了氧化条件下利用三价铑催化剂经碳氢键活化与炔烃偶联合成异喹啉的方法.随后,众多研究组利用氧化型导向基策略在无外加氧化剂条件下高效、高选择性地合成了异喹啉.除了利用三价铑催化剂之外,利用二价钌催化剂通过碳氢活化策略也能实现类似反应.但是,这些反应体系都必须使用铑和钌等贵金属催化剂,极大地限制了该合成异喹啉方法的应用前景.近年来,数个研究组将地球上储量丰富、便宜有效的钴络合物作为催化剂应用到芳烃的碳氢键活化反应中,在简单的反应条件下合成了各种杂环化合物.对于一些反应,三价钴催化与三价铑催化能形成互补.最近,Kanai,Ackermann和Sundararaju几乎同时报道了三价钴催化肟谜的碳氢键活化,并在无外加氧化剂条件下实现了其与炔烃的偶联反应,高效地合成了异喹啉,在该类反应中以氮–氧键断裂作为内部氧化剂.但是在钴催化条件下氧化性的氮–硫键作为内部氧化剂辅助碳氢键活化的反应尚无报道.本课题组最近报道了芳基酮的N-亚磺酰亚胺与烯烃和胺化试剂的偶联反应,经N–S键断裂,高效合成了喹唑啉.本文利用三价钴催化剂在无外加氧化剂条件下实现了芳基酮N-亚磺酰亚胺与炔烃的偶联,反应经历了碳氢键活化和氮硫键断裂得到异喹啉.此反应对端炔和内炔底物均适用.为了初步了解反应机理,我们利用分子内竞争的方法进行了动力学同位素效应测定,结果表明碳氢键断裂过程可能是反应的决速步骤.结合文献结果,提出了可能的反应机理.  相似文献   

18.
陈宁  雷佳  王智传  刘颖杰  孙凯  唐石 《有机化学》2022,(4):1061-1084
含氟杂环化合物由于其优异的物理化学性质,在有机化学、药物化学、材料科学等诸多领域扮演着重要的角色.但自然界中,天然含氟杂环化合物屈指可数,开发高效的含氟杂环化合物的合成方法显得尤为重要.随着过渡金属催化、光催化以及电催化自由基反应的迅速发展,自由基化学在合成领域取得了突破性进展,激发了有机化学家利用自由基化学构建含氟杂环的兴趣.主要以不饱和烃的单氟烷基化、二氟烷基化、三氟甲基化、三氟烷氧/硫/硒基化、全氟烷基化以及杂环的直接C—H氟烷基化进行分类,从过渡金属催化、光催化以及电催化等几个方面,对自由基介导的含氟侧链杂环化合物的构建进行讨论.  相似文献   

19.
自1910年首次被报道以来,烯基叠氮类化合物受到了化学工作者们广泛的关注.作为一类重要的有机合成中间体,尤其是在过渡金属催化下合成氮杂环类化合物方面,烯基叠氮类化合物有着广泛的应用.主要综述了烯基叠氮类化合物在构建含氮杂环化合物领域的研究进展.  相似文献   

20.
二芳基碘鎓盐属于有机高价碘化合物,具有无毒、反应条件温和以及良好的选择性等优点,在有机合成中具有重要地位,受到广大化学工作者的关注。近年来,利用二芳基碘鎓盐在金属催化下进行的芳基化反应为一些难以合成的杂环化合物的合成提供了简便、高效的方法;同时,二芳基碘鎓盐在无催化剂下进行的芳基化反应,为C—C偶联反应开辟了新的绿色合成路线。本文综述了近年来二芳基碘鎓盐在有机合成中促进芳基化反应的最新进展,着重介绍了利用二芳基碘鎓盐作为芳基化试剂与有机金属试剂、烯烃和炔烃类以及杂环化合物进行芳基化反应的研究;总结了二芳基碘鎓盐与杂环化合物反应中钯催化和铜催化下芳基化反应的机理,最后对二芳基碘鎓盐在今后有机合成中的应用作出了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号