首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of organic electron-rich π-bridged symmetric hydrazones, composed of two donor moieties connected through a thiophene- or a pyrrole-based π-spacer, has been synthesized as a suitable alternative to 2,2’,7,7’-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9’-spirobifluorene ( Spiro-OMeTAD ), considered the benchmark hole transporting material (HTM) in perovskite solar cells (PSCs). The cheap synthetic protocol is suitable for potential large-scale production. All the compounds were characterized, showing good energy levels alignments with the perovskite and very close energy levels to the Spiro-OMeTAD . Furthermore, computational analysis confirmed the electrochemical trend observed. The costs of synthesis were estimated, as well as the produced waste to synthesise the final HTMs, underlining the low impact of these compounds on the environment with the respect to Spiro-OMeTAD . Overall, the relevant electrochemical properties and the low cost of the synthetic approaches allow these compounds to be a greener and easy-to-synthesize alternative to the Spiro-OMeTAD for industrial development of PSCs.  相似文献   

2.
王伟国  白天  薛高飞  叶美丹 《电化学》2021,27(2):216-226
Spiro-OMeTAD是钙钛矿型太阳能电池中应用最广泛的空穴传输材料,它本身的空穴传输率很低,需要氧化之后才能满足高效率太阳能电池器件的要求.然而,Spiro-OMeTAD在空气中的氧化时间较长,同时空气中的水分会造成器件效率的下降以及器件质量不稳定等不良后果.基于此,我们通过一步法制备CsPbIBr2无机钙钛矿太阳...  相似文献   

3.
Nowadays, both n-i-p and p-i-n perovskite solar cells (PSCs) device structures are reported to give high performance with photo conversion efficiencies (PCEs) above 20%. The efficiency of the PSCs is fundementally determined by the charge selective contact materials. Hence, by introducing proper contact materials with good charge selectivity, one could potentially reduce interfacial charge recombination as well as increase device performance. In the past few years, copious charge selective contact materials have been proposed. Significant improvements in the corresponding devices were observed and the reported PCEs were close to that of classic Spiro-OMeTAD. This mini-review summarizes the state-of-the-art progress of typical electron/hole selective contact materials for efficient perovskite solar cells and an outlook to their development is made.  相似文献   

4.
To date, perovskite solar cells (pero-SCs) with doped 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (Spiro-OMeTAD) hole transporting layers (HTLs) have shown the highest recorded power conversion efficiencies (PCEs). However, their commercialization is still impeded by poor device stability owing to the hygroscopic lithium bis(trifluoromethanesulfonyl)imide and volatile 4-tert-butylpyridine dopants as well as time-consuming oxidation in air. In this study, we explored a series of single-component iodonium initiators with strong oxidability and different electron delocalization properties to precisely manipulate the oxidation states of Spiro-OMeTAD without air assistance, and the oxidation mechanism was clearly understood. Iodine (III) in the diphenyliodonium cation (IP+) can accept a single electron from Spiro-OMeTAD and forms Spiro-OMeTAD⋅+ owing to its strong oxidability. Moreover, because of the coordination of the strongly delocalized TFSI with Spiro-OMeTAD⋅+ in a stable radical complex, the resulting hole mobility was 30 times higher than that of pristine Spiro-OMeTAD. In addition, the IP-TFSI initiator facilitated the growth of a homogeneous and pinhole-free Spiro-OMeTAD film. The pero-SCs based on this oxidizing HTL showed excellent efficiencies of 25.16 % (certified: 24.85 % for 0.062-cm2) and 20.71 % for a 15.03-cm2 module as well as remarkable overall stability.  相似文献   

5.
Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) has been identified as the most used and effective p-dopant for hole transport layer (HTL) in perovskite solar cells (PSCs). However, the migration and agglomeration of Li-TFSI in HTL negatively impact PSCs performance and stability. Herein, we report an effective strategy for adding a liquid crystal organic small molecule (LQ) into Li-TFSI doped (2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′- spirobifluorene (Spiro-OMeTAD) HTL. It was found that the introduction of LQ into Spiro-OMeTAD HTL can efficiently enhance the charge carrier extraction and transportation in device, which can strongly retard the charge carrier recombination in device. Consequently, the PSCs efficiency is significantly enhanced to 24.42 % (Spiro-OMeTAD+LQ) from 21.03 % (Spiro-OMeTAD). The chemical coordination between LQ and Li-TFSI can strongly confine Li+ ions migration and agglomeration of Li-TFSI, thus, achieving the enhanced device stability. Only a 9 % efficiency degradation is observed for un-encapsulated device prepared with Spiro-OMeTAD and LQ after 1700 h under air environment, while the efficiency drops by 30 % for the reference device. This work provides an effective strategy for improving the efficiency and stability of PSCs, and gives some important insights for understanding intrinsic hot carriers dynamics for perovskite-based optoelectronic devices.  相似文献   

6.
Due to the low intrinsic hole mobility caused by the orthogonal conformation of two fluorene units in Spiro-OMeTAD which is a classic hole-transporting material (HTM) in perovskite solar cells (PSCs), Spiro-OMeTAD based PSCs generally can only obtain high performances through a sophisticated doping process with dopants/additives, which adds to the cost and complicacy of device fabrication, and also adversely affects the stability of PSC devices. Herein, a novel dispiro-based HTM, WH-1, is designed by cleverly replacing the central carbon atom of Spiro-OMeTAD with cyclohexane, and the spatial configuration of the HTM is changed from vertical orthogonality of the two fluorene units to a parallel arrangement, which is beneficial for the formation of a homogeneous and compact HTM film on the surface of the perovskite film, improvement of intermolecular electronic coupling and intrinsic hole mobility. WH-1 is obtained by two-step facile synthesis with a high yield from commercially available materials. WH-1 is used in PSCs as a dopant-free HTM, which is the first time that the dispiro-based molecule has been applied as a dopant-free HTM, and a power conversion efficiency (PCE) of 19.57% is obtained, rivaling Li-TFSI/t-BP doped Spiro-OMeTAD in PCE (20.29%), and showing obvious superior long-term stability.

A dispiro-based HTM with a parallel arrangement of two fluorenes was designed by replacing the central carbon atom of Spiro-OMeTAD with cyclohexane. The PCE of a PSC based on dopant-free WH-1 is 19.57%, rivaling that of doped Spiro-OMeTAD (20.29%).  相似文献   

7.
Two novel hole transport materials (HTMs) with indaceno[1,2-b:5,6-b']dithiophene (IDT) as core building blocks,termed IDT1 and IDT2,were designed and synthesized.The side alkyl chains were introduced to regulate and control the morphology and stacking behavior of HTMs,and the peripheral triarylamine arms were introduced to adjust the energy levels and to facilitate efficient hole transport.Applied in mesoporous structured perovskite solar cells (PSCs),HTM IDT1 achieved higher power conversion efficiency (PCE,19.55%) and better stability than Spiro-OMeTAD (19.25%) and IDT2 (15.77%) based PSC.These results suggest the potential of IDTl as a promising HTM for PSCs.  相似文献   

8.
《印度化学会志》2023,100(5):101001
Perovskite solar cells (PSCs) have the potential to be highly efficient, low-cost next-generation solar cells. By raising open circuit voltage (Voc), the interfacial recombination kinetics can further improve device performance. In this study, we used simulation concept to elucidate the influence of using graphene as a surface passivation material in perovskite solar cells. Graphene works well as an interlayer to promote hole extraction and reduce interfacial recombination. In order to evaluate the effect of graphene in PSCs, the simulation was done in the SCAPS-1D framework to compare the performance of a device with and without graphene. Three interface layers were included to the model: TiO2/MAPbI3, MAPbI3/Graphene, and Graphene/Spiro-OMeTAD, in order to account for the impacts of interface defect density on device performance. The impacts of absorber doping concentration, absorber defect density, ETL doping concentration, HTL doping concentration, series resistance, and shunt resistance were also evaluated for the modelled PSC. Without any optimization, the control device with power conversion efficiency (PCE) of 20.677% was outperformed by the graphene-modified device with PCE of 20.911%. This difference is mostly due to the lower recombination losses and more effective suppression of interfacial non-radiative recombination. With optimization, the modified graphene-based device has a PCE of 26.667%. This result shows an enhancement of ∼1.28 times over that of the pristine graphene-based device. The outcomes have opened the way for the development of cost-effective and comparable state-of-the-art, high-efficiency perovskite solar cells with graphene interlayer by eliminating defects and managing non-radiative recombination.  相似文献   

9.
The possible exhaustion of fossil fuels in the near future and soaring global energy demand have driven the search for new types of sustainable and renewable alternatives. Perovskite (CH3NH3PbX3, X = I, Br, Cl) solar cells are a type of solar cell based on a perovskite absorber, most commonly a tin halide-based or hybrid organic–inorganic lead material, as the visible-light sensitizer layer, which produces electricity from sunlight. Recently, perovskite solar cells have received substantial worldwide attention. Compared with traditional solar cells, the perovskite solar cells can obtain high efficiency with a simple architecture and via a cost-effective process. In the latest 5 years, the efficiency of perovskite solar cells to convert power has skyrocketed from 3.8 % to more than 19.3 %. It is the fastest advancing solar technology to date. The highest efficiency demonstrated by perovskite solar cells is higher than that of dye-sensitized solar cells (DSSCs). A lager number of research groups have demonstrated that perovskite solar cells may ultimately boost efficiency as high as 25 %. The high efficiency and cheap production costs make it evident that perovskite solar cells have great potential to be commercialized soon. In this review, the history, materials, processing and architecture of solar cells are discussed to obtain a better understanding of high-performance perovskite solar cells.  相似文献   

10.
分别采用一步水热法和两步水热法在导电玻璃(FTO)上制备了二氧化钛(TiO2)纳米棒(NR)阵列和TiO2分枝纳米棒(B-NR)阵列。 利用低温化学浴沉积法(CBD)在TiO2纳米棒阵列(NRA)和TiO2分枝纳米棒阵列(B-NRA)基底上沉积Sb2S3纳米粒子(NPs)。 接着分别旋涂聚-3已基噻吩(P3HT)和2,2'7,7'-四-(二甲氧基二苯胺)螺芴(Spiro-OMeTAD)组装成TiO2(NRA)/Sb2S3/P3HT/Spiro-OMeTAD和TiO2(B-NRA)/Sb2S3/P3HT/ Spiro-OMeTAD为光活性层的杂化太阳电池。 结果表明,由TiO2(NRA)/Sb2S3/P3HT/Spiro-OMeTAD复合膜结构组装的杂化太阳电池的光电转换效率(PCE)是2.92%,而由TiO2(B-NRA)/Sb2S3/P3HT/Spiro-OMeTAD复合膜结构组装的杂化太阳电池的PCE提高到了4.67%。  相似文献   

11.
贾梦珠  吕功煊 《分子催化》2020,34(4):334-340
钙钛矿太阳能电池因具有成本低、制备容易和光电性能优异等突出特点受到了广泛关注.钙钛矿太阳能电池能量转化效率已从2009年的3.8%提升到2019年的25.2%.我们在文中重点总结了钙钛矿电池吸收层的制备工艺,掺杂和晶体组成、结构调控方面取得的重要进展,以及这些突破对电池效率提高的贡献,同时也提出了钙钛矿太阳能电池发展仍需要解决的问题.  相似文献   

12.
王蕾  周勤  黄禹琼  张宝  冯亚青 《化学进展》2020,32(1):119-132
近年来,新兴起的有机无机杂化钙钛矿太阳能电池突飞猛进,在短短十年里其光电转化效率从3.8%迅速发展到目前25.2%的认证效率,被视为最具有应用潜力的新型高效率太阳能电池之一。虽然钙钛矿太阳能电池具有很高的光电转换效率已与多晶硅薄膜电池相媲美,但是电池的长期稳定性仍是阻碍其商业化的一大挑战。钙钛矿表面和晶界存在大量的缺陷,界面钝化来提高钙钛矿太阳能电池的稳定性是非常重要且有效的策略。二维钙钛矿材料是有机胺层与无机层交替的层状钙钛矿,具有体积较大的有机铵阳离子,与传统的三维钙钛矿材料相比对于环境的稳定性较好,并且结构灵活可调,在三维钙钛矿表面修饰二维钙钛矿层钝化缺陷,在提高钙钛矿太阳能电池效率的同时又保证了稳定性,另外,合适的钝化剂分子也能够非常有效地钝化缺陷。本文总结了钙钛矿太阳能电池的不稳定因素,归纳了钙钛矿太阳能电池界面钝化方面的研究进展,指出了二维钙钛矿材料发展的巨大潜力以及寻找合适钝化剂分子的原则,期望能够为获得高性能的钙钛矿太阳能电池进而实现商业化提供有益的指导。  相似文献   

13.
《中国化学快报》2023,34(12):108629
The mitigation of under-coordinated Pb2+ (halide vacancy) defect remains an imperative challenge in the perovskite solar cells, especially printable mesoscopic perovskite solar cells (FP-PSCs). Here we report a commercial-available polyazin anticancer drug Sapanisertib as coordination passivator of halide vacancies in FP-PSCs, thereby achieving the photoelectric conversion efficiency (PCE) to 18.46%, along with a record certified PCE of 18.27%. In polazin Sapanisertib (Sap), there exists two kinds of nitrogen atoms: in-aromatic ring (in purine and oxazole rings, IAR-Ns) and out-aromatic ring (substituted amino groups, OAR-Ns). Through multiple characterizations, and DFT calculations show that substituted amino groups OAR-Ns hardly get interaction with the halide vacancy due to the distribution of charge density in Sapanisertib. Our work suggests that the selective coordination is of great significance for the design of high-performance passivators for printable mesoscopic perovskite solar cells.  相似文献   

14.
卤化钙钛矿由于具有低成本、高效率等特点,最近作为非常有前景的太阳能电池吸收层材料被广泛研究。卤化钙钛矿型太阳能电池效率在短短的几年间由3.8%(2009年)迅速增加到22.1%(2016年)。卤化钙钛矿型太阳能电池的出现彻底改变了太阳能电池领域,不仅因为它们快速增长的效率,而且因为它们在材料生长和结构方面的可控性。卤化钙钛矿型太阳能电池的优越性能说明卤化钙钛矿材料具有独特的物理性质。在本综述中,我们总结了卤化钙钛矿材料最近几年在结构、电学、光学方面的理论研究成果,这些都与它们在太阳能电池方面的应用密切相关。我们也将探讨一些卤化钙钛矿型太阳能电池目前遇到的挑战以及可能的理论解决途径。  相似文献   

15.
刘娇  李仁志  董献堆 《应用化学》2016,33(5):489-503
自从2009年钙钛矿材料被应用到太阳电池领域,到现在仅6年的时间里,钙钛矿型太阳电池的光伏转换效率从约3%提高到20.1%,受到全球瞩目。 本文对近年来钙钛矿型太阳电池的发展进行了综述,介绍了钙钛矿吸光材料的性能及其制备,总结了钙钛矿型太阳电池器件结构及其内在机理,探讨了该类型电池待突破的方向和可能的解决途径,阐述了钙钛矿型太阳电池的进展历程,展望了未来发展方向。  相似文献   

16.
近年来,有机-无机卤化铅钙钛矿太阳电池的研究取得了突破性进展,公证记录电池效率22.1%,与CdTe薄膜电池(认证记录电池效率22.1%)和CuInGaSn(CIGS)(认证记录电池效率22.3%)薄膜电池技术相媲美,已经接近于市场上主导地位的晶体硅太阳电池(约25%)。有机卤化铅钙钛矿太阳电池器件的长期效率输出稳定性和含毒性Pb严重制约其实际应用。本文将讨论有机卤化铅钙钛矿太阳电池不稳定性因素和相应的解决方案,并对钙钛矿材料中Pb元素的取代工作和无机非铅钙钛矿材料及其太阳电池的研究进行了阐述与展望。  相似文献   

17.
Flexible perovskite solar cells have attracted widespread research effort because of their potential in portable electronics. The efficiency has exceeded 18 % owing to the high‐quality perovskite film achieved by various low‐temperature fabrication methods and matching of the interface and electrode materials. This Review focuses on recent progress in flexible perovskite solar cells concerning low‐temperature fabrication methods to improve the properties of perovskite films, such as full coverage, uniform morphology, and good crystallinity; demonstrated interface layers used in flexible perovskite solar cells, considering key figures‐of‐merit such as high transmittance, high carrier mobility, suitable band gap, and easy fabrication via low‐temperature methods; flexible transparent electrode materials developed to enhance the mechanical stability of the devices; mechanical and long‐term environmental stability; an outlook of flexible perovskite solar cells in portable electronic devices; and perspectives of commercialization for flexible perovskite solar cells based on cost.  相似文献   

18.
《中国化学快报》2020,31(9):2249-2253
In the past ten years, perovskite solar cells were rapidly developed, but the intrinsic unbalanced charge carrier diffusion lengths within perovskite materials were not fully addressed by either a planar heterojunction or meso-superstructured perovskite solar cells. In this study, we report bulk heterojunction perovskite solar cells, where perovskite materials CH3NH3PbI3 is blended with solution-processed n-type TiOx nanoparticles as the photoactive layer. Studies indicate that one-step solution-processed CH3NH3PbI3:TiOx bulk-heterojunction thin film possesses enhanced and balanced charge carrier mobilities, superior film morphology with enlarged crystal sizes, and suppressed trap-induced charge recombination. Thus, bulk heterojunction perovskite solar cells by CH3NH3PbI3 mixed with 5 wt% of TiOx, which is processed by one-step method rather than typical two-step method, show a short-circuit current density of 20.93 mA/cm2, an open-circuit voltage of 0.90 V, a fill factor of 80% and with a corresponding power conversion efficiency of 14.91%, which is more than 30% enhancement as compared with that of perovskite solar cells with a planar heterojunction device structure. Moreover, bulk heterojunction perovskite solar cells possess enhanced device stability. All these results demonstrate that perovskite solar cells with a bulk heterojunction device structure are one of apparent approaches to boost device performance.  相似文献   

19.
钙钛矿太阳能电池因其光吸收效率高、载流子寿命长、晶格缺陷容忍度高、能带可调等优点得到迅速发展,在短短几年内其太阳能转化效率已经达到22.1%。然而,在人们看到钙钛矿太阳能电池广阔发展前景的同时,其铅毒性和不稳定性严重限制了它的应用推广。无机非铅钙钛矿太阳能电池(ABX_3、A_2BB′X_6等)利用Sn、Ge、Bi、Ag等金属取代铅,以Cs、Rb等取代甲胺有希望解决目前钙钛矿太阳能电池的毒性和稳定性问题。本文主要对近几年无机非铅钙钛矿太阳能电池的研究现状做一个分析总结,并对其发展前景进行展望。  相似文献   

20.
High-efficiency perovskite solar cells(PSCs) reported hitherto have been mostly prepared in a moisture and oxygen-free glove-box atmosphere, which hampers upscaling and real-time performance assessment of this exciting photovoltaic technology. In this work, we have systematically studied the feasibility of allambient-processing of PSCs and evaluated their photovoltaic performance. It has been shown that phasepure crystalline tetragonal MAPbI_3 perovskite films are instantly formed in ambient air at room temperature by a two-step spin coating process, undermining the need for dry atmosphere and post-annealing.All-ambient-processed PSCs with a configuration of FTO/TiO_2/MAPbI_3/Spiro-OMeTAD/Au achieve opencircuit voltage(990 mV) and short-circuit current density(20.31 mA/cm~2) comparable to those of best reported glove-box processed devices. Nevertheless, device power conversion efficiency is still constrained at 5% by the unusually low fill-factor of 0.25. Dark current–voltage characteristics reveal poor conductivity of hole-transporting layer caused by lack of oxidized spiro-OMe TAD species, resulting in high seriesresistance and decreased fill-factor. The study also establishes that the above limitations can be readily overcome by employing an inorganic p-type semiconductor, copper thiocyanate, as ambient-processable hole-transporting layer to yield a fill-factor of 0.54 and a power conversion efficiency of 7.19%. The present findings can have important implications in industrially viable fabrication of large-area PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号