首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,人工碳纳米材料在诸多领域都显示出了广泛的应用前景,而碳纳米材料产量和使用量的大幅增加也使其环境行为与效应受到关注。碳纳米材料进入环境后,可发生复杂的物理、化学和生物转化,导致其表面电荷、疏水性及表面官能团等理化性质发生显著改变。碳纳米材料的环境转化一方面可导致其胶体稳定性、迁移能力和生物效应发生改变,另一方面可显著影响其富集、输送和转化环境污染物的能力,因此,环境转化决定了碳纳米材料的环境行为及其效应。本文总结了近年来有关人工碳纳米材料环境转化及其效应的主要研究成果,探讨了环境转化影响碳纳米材料环境行为与效应的关键机制和构效关系。  相似文献   

2.
王春雷  马丁  包信和 《化学进展》2009,21(9):1705-1721
碳纳米材料(包括零维、一维、二维碳纳米材料以及碳纳米孔材料)是一类新型的催化剂或催化剂载体材料,在氧化脱氢、选择加氢、合成氨、氨分解制氢以及燃料电池等多相催化领域具有广阔的应用前景。本文综述了近年来新型碳纳米材料在多相催化领域中的应用研究进展,介绍了这类催化材料的制备方法,重点阐述了碳载体的微/介观结构、掺杂、电子性质、表面性质、限域效应等对所担载的催化活性组分的分散,对反应物的扩散以及对催化反应的活性和选择性等方面的影响。  相似文献   

3.
表面限域催化的在位化学反应为可控构筑低维碳纳米材料提供了新的思路和手段.结合近期研究工作,本文主要介绍了碳基纳米材料的可控制备和精细表征,包括含有碳碳双键和碳碳三键的有机纳米导线、含有周期性4-8-4元环的石墨烯纳米带等,并简要概述了该领域的国际前沿研究现状.  相似文献   

4.
随着碳纳米材料的大量生产和应用,对不同介质中碳纳米材料的检测和表征方法显得尤为重要。本文综述了碳纳米材料常用的表征和检测技术。首先介绍了碳纳米材料的分离富集技术,包括萃取分离、分级分离以及多种分离方式结合的样品前处理技术,然后综述了电子显微镜、光谱、热分析、电化学分析、同位素标记和成像等表征技术,以及荧光光谱、激光诱导击穿光谱、质谱、扫描拉曼显微镜以及多种技术联用的定量分析方法,并对一些新兴的碳纳米材料以及一些特殊的表征检测方法进行了介绍。最后,对碳纳米材料的未来发展趋势和前景进行了展望。  相似文献   

5.
碳纳米材料的细胞生物效应   总被引:2,自引:0,他引:2  
碳纳米材料包括富勒烯如C60、金属富勒烯、碳纳米管及其衍生物等.这一类纳米材料不仅在环境和生物医学领域已有大量的基础研究成果,而且具有广泛的应用前景.因此,理解它们与细胞相互作用的过程和相互作用机制,对阐明它们的生物医学功能十分重要.尤其是这类纳米颗粒是否能够进入细胞,如何进入细胞,在细胞内的定位,以及对细胞的生物学功能有何影响,本文对这些问题,从不同的方面进行了综述和探讨.为这类纳米材料的生物医学应用提供了较为系统的基础知识.  相似文献   

6.
通过在三聚氰胺热分解过程中加入NaHCO3制备出具有氮缺陷的石墨相氮化碳(g-C3N4),利用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、N2吸附-脱附、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-vis DRS)和固体荧光光谱(PL)等方法对其进行表征,并在可见光(λ> 420nm)照射下,以水相中罗丹明B(RhB)的降解为模型反应,研究了该氮缺陷g-C3N4对有机污染物降解的光催化活性。结果表明,引入氮缺陷可以提高g-C3N4对可见光的吸收以及电子-空穴对的分离效率,进而提高g-C3N4的可见光催化活性。催化剂CNK0.005、CNK0.01和CNK0.05在30min内对RhB的降解率分别为79.8%、100.0%和87.6%;而在相同条件下,没有氮缺陷的g-C3N4对RhB的降解率仅为59.8%。  相似文献   

7.
金属有机骨架(metal-organic frameworks,MOFs)材料是一类由金属离子(团簇)与有机配体形成的新型多孔材料,在生物医药和环境等领域具有广阔的应用前景.然而在应用过程中,人体的生理环境和外界环境均能引起MOFs结构的变化甚至降解,进而影响MOFs的功能及应用,并可能对人体和环境健康产生潜在风险.因...  相似文献   

8.
样品前处理通常是复杂样品分析过程中必不可少的步骤.近年来,具有强磁响应性、高比表面积和良好机械强度的碳基磁性纳米材料已被广泛应用于环境样品分析前处理领域.本文综述了包括基于碳纳米管和石墨烯的2类碳基磁性复合型固相萃取吸附剂在环境样品中痕量污染物富集和分析中应用的最新进展,并对其在环境样品分析领域的发展前景进行了展望.  相似文献   

9.
以十二烷基苯磺酸钠(SDBS)为模板, 采用低温固相反应法合成了硫掺杂二氧化锡(S-SnO2)纳米粉体材料, 并用XRD、XPS、SEM、UV-Vis、FTIR及HR-TEM等技术对材料进行了表征, 探讨了S掺杂SnO2纳米材料对百草枯的可见光降解性能, 分析了S掺杂效应的作用机理。结果表明, 采用固相反应法所得SnO2及S-SnO2纳米材料的禁带宽度变窄, SDBS对材料的表面结构具有一定的调控作用。S是以S(Ⅳ)和S(Ⅵ)的形式进入SnO2晶格形成Sn1-xSxO2晶体结构而不是进入SnO2晶格间隙, Sn-O-S键的弯曲振动峰介于930~980 cm-1之间。S的掺杂使SnO2纳米材料表面活性增强, 光催化降解百草枯的活性依次为SnO2 2(SDBS) 2 2(SDBS), 2 h内, S-SnO2(SDBS)样品对除草剂百草枯的光催化活性达95.2%, 其主要原因是S-SnO2(SDBS)材料表面有更多的羟基和进入SnO2晶格的S, 有利光生电荷的有效分离。  相似文献   

10.
本文综述了溶剂热法合成多种碳纳米管、纳米电缆、纳米棒、纳米球和纳米空心锥的研究现状。350 ℃下用金属钾还原六氯代苯,在用不同催化剂时,可分别得到碳纳米管和碳球,碳球的形成可以解释为石墨层的微条卷曲而成。600 ℃下金属镁还原乙醇得到了竹节状和Y-型碳纳米管。500 ℃下还原四氯化碳和碳酸钠可得到平均直径为100 nm的碳纳米管。700 ℃下金属锌还原乙醚制成了左右螺旋型交织的碳纳米管。在硫的存在下,200 ℃以下二茂铁热解成非晶碳纳米管和Fe/非晶碳纳米同轴电缆。  相似文献   

11.
氢气作为高效洁净的二次能源备受关注,但由于氢气无色无味、易爆炸,因此在使用的过程中必须对环境中的氢气进行检查。这就决定了氢气传感器在现代工业、燃料电池及氢的贮存和分离等的氢检测方面有着重要的应用。开发灵敏度高、选择性和稳定性好的氢气传感器一直是传感器领域研究的重要方向。由于具有独特的物理化学性质、高的比表面积和优越的电子特性,碳纳米材料常作为氢气传感器的敏感材料的载体。碳纳米复合材料在吸附氢气之后,其电子性质会发生变化,利用这个性质可以实现对氢气的检测。本文就碳纳米材料与金属纳米粒子、金属氧化物、聚合物的复合材料的氢敏感材料进行了系统的分析,综述了近年来基于碳纳米材料的氢气传感器的研究进展,并对氢气传感器的应用前景和发展趋势进行了展望,指出了需要研究的科学问题。  相似文献   

12.
As a powerful tool for monitoring and modulating neural activities, implantable neural electrodes constitute the basis for a wide range of applications, including fundamental studies of brain circuits and functions, treatment of various neurological diseases, and realization of brain-machine interfaces. However, conventional neural electrodes have the issue of mechanical mismatch with soft neural tissues, which can result in tissue inflammation and gliosis, thus causing degradation of function over chronic implantation. Furthermore, implantable neural electrodes, especially depth electrodes, can only carry out limited data sampling within predefined anatomical regions, making it challenging to perform large-area brain mapping. With excellent electrical, mechanical, and chemical properties, carbon-based nanomaterials, including graphene and carbon nanotubes (CNTs), have been used as materials of implantable neural electrodes in recent years. Electrodes made from graphene and CNT fibers exhibit low electrochemical impedance, benefiting from the porous microstructure of the fibers. This enables a much smaller size of neural electrode. Together with the low Young's modulus of the fibers, this small size results in very soft electrodes. Soft neural electrodes made from graphene and CNT fibers show a much-reduced inflammatory response and enable stable chronic in vivo action potential recording for 4-5 months. Combining different modalities of neural interfacing, including electrophysiological measurement, optical imaging/stimulation, and magnetic resonance imaging (MRI), could leverage the spatial and temporal resolution advantages of different techniques, thus providing new insights into how neural circuits process information. Transparent neural electrode arrays made from graphene or CNTs enable simultaneous calcium imaging through the transparent electrodes, from which concurrent electrical recording is taken, thus providing complementary cellular information in addition to high-temporal-resolution electrical recording. Transparent neural electrodes from carbon-based nanomaterials can record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Graphene and CNT-based materials were used to fabricate MRI-compatible neural electrodes with negligible artifacts under high field MRI. Simultaneous deep brain stimulation (DBS) and functional magnetic resonance imaging (fMRI) with graphene fiber electrodes in the subthalamic nucleus (STN) in Parkinsonian rats revealed robust blood oxygenation level dependent responses along the basal ganglia-thalamocortical network in a frequency-dependent manner, with responses from some regions not previously detectable. This review introduces the recent development and application of neural electrode technologies based on graphene and CNTs. We also discuss biological safety issues and challenges faced by neural electrodes made from carbon nanomaterials. The use of carbon-based nanomaterials for the fabrication of various soft and multi-modality compatible neural electrodes will provide a powerful platform for both fundamental and translational neuroscience research.  相似文献   

13.
<正>近期,上海交通大学生命科学技术学院教授许平团队在微生物分解代谢研究领域获得突破,进一步阐明尼古丁等环境毒物的降解机制。日前,相关研究成果以封面论文形式发表于《分子微生物学》。在烟草加工过程中会产生大量富含尼古丁等烟碱类化合物的固体和液体废弃物,这些物质易进入地下水,并对环境造成一定的影响,因此降低烟草废弃物中尼古丁含量对于保护环境有着重要的意义。恶臭假单胞菌S16能够以尼古丁作为底物生长并将其完全矿化,在降低烟草中尼古丁含量和处理烟草废物的过程中发挥重要作用。课题组成员在研究假单胞菌属中参与重要环境毒物尼古丁分解代谢  相似文献   

14.
介孔碳纳米材料因具有快速传输通道、优异的导电性、极高的比表面积和出色的化学稳定性在众多领域受到广泛关注.实现介孔碳纳米材料的可控制备和精准改性是当前的研究热点和重点.基于此,本文分析总结了这类材料的制备和改性方法,并讨论了存在的问题和未来研究方向.  相似文献   

15.
碳纳米材料与共存污染物的联合毒性   总被引:1,自引:0,他引:1  
碳纳米材料(carbon nanomaterials,CNMs)具有广泛的应用,其产量飞速增长,并在纳米产品的消费过程中不可避免地被释放到环境中.环境中的CNMs能够与共存污染物(如有机污染物、重金属和其他纳米颗粒)相互作用,影响彼此的归趋及毒性效应.因此在评价CNMs的环境风险时,CNMs与环境中共存污染物的联合毒性不容忽视.本文首先归纳了CNMs对生物体的直接及间接致毒机制,随后着重探讨了CNMs与有机污染物、重金属等环境污染物的联合毒性,从CNMs与其他污染物的作用方式入手,探究了联合毒性与单一毒性发生差异(增强或抑制)的机制,最后对目前CNMs与共存污染物联合毒性的评价方法、研究水平以及面临的挑战进行了分析和展望,为准确评估并深入理解CNMs的环境风险提供一定的理论基础.  相似文献   

16.
碳纳米材料具有良好的力学、电学及化学性能等特点,被人们广泛研究,特别是具有大比表面积、高的电导率和良好生物相容性的碳纳米管和石墨烯更是研究的热点,在电化学领域显示出独特的优势.采用碳纳米材料修饰的电极具有高灵敏度、高选择性及优良的媒介作用.主要阐述了碳纳米材料在修饰电极领域中的应用,从功能及应用上重点探讨了近年来碳纳米管、石墨烯、富勒烯、纳米金刚石等碳纳米材料在修饰电极领域的研究进展.  相似文献   

17.
由于碳纳米材料具有良好的力学、电学及化学性能而被人们广泛研究,特别是对于具有大比表面积、高的电导率和良好生物相容性的碳纳米管、碳纳米纤维和石墨烯更是研究的热点。这些新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域,特别是在电化学领域中显示出其独特的优势。本文主要阐述了碳纳米材料在电化学领域包括生物传感器、超级电容器和燃料电池中的应用。碳纳米材料由于高的比表面积和其较好的生物相容性,在生物电催化反应中起着重要作用,能够提高酶的直接电子传递速率,因而基于碳纳米材料构建的生物传感器灵敏度高、线性范围宽、重复性和稳定性能好。碳纳米材料是超级电容器研究最早和最成熟的一种,由其制备的超级电容器循环稳定性好,再通过和一些赝电容型电极材料复合,可使其比电容得到提高。另外,碳纳米材料作为燃料电池中的催化剂,能够提高燃料电池的能量密度、燃料利用率和抗中毒能力。  相似文献   

18.
简述了非酶葡萄糖传感器的研究现状以及碳纳米新材料的电化学优势,主要讨论了碳纳米管、石墨烯及石墨烯氧化物、有序介孔碳、碳纤维和富勒烯等碳纳米材料与各种金属氧化物组成的复合材料构建的非酶葡萄糖传感器的电化学性能,重点探索了材料的制备方法和结构形貌对葡萄糖检测性能的影响。本文为基于碳纳米材料的非酶葡萄糖传感器的构建提供了材料选择、制备方法以及结构形貌等方面的参考,并对非酶葡萄糖传感器的发展及研究方向作出了展望。  相似文献   

19.
碳纳米材料因独特的物理化学性质,而成为纳米产品中使用最多的纳米材料之一.这些纳米材料不可避免地通过各种途径进入环境,其生物安全性研究是碳纳米科技健康发展亟待解决的关键科学问题.寻找和建立针对环境生物体系中碳纳米材料高灵敏、本征的定量检测方法,获得与环境生物体系相关的数据,是推动其环境纳米生物效应和安全性研究的关键.在纳米毒理学研究中,同位素标记分析方法是一种不可替代的定量分析方法,尤其对碳纳米材料,具有独特的优势.结合现代分析技术,可本征、快速、准确、高灵敏地对其纳米生物效应与毒理学进行研究.本文综述了典型碳纳米材料的放射性同位素和稳定性同位素标记技术和方法、检测方法及其在碳纳米材料结构形成、生物体内定量吸收、分布、转化和排泄等纳米生物效应与毒理学分析研究的相关应用,并展望了同位素标记技术在碳纳米材料的毒理学研究和环境健康效应研究中的应用.  相似文献   

20.
李晶  杨晓英 《化学进展》2013,(Z1):380-396
纳米生物检测是目前纳米科学、生物化学及诊断技术相结合的新的重要研究方向。石墨烯由于具有优良的电子、光学、热学、化学和机械性质,使其具有构筑探针分子和信号传递并放大的三重作用,成为应用于超灵敏生物传感器的理想材料。快速的电子传递和可多重修饰的化学性质使其能够实现准确而高选择性的生物分子检测。石墨烯及其复合材料越来越多地被应用到生物传感器的制备中。本文综述了近几年石墨烯及其衍生物在生物传感器研究中的进展,包括修饰石墨烯的各种材料、多种生物活性物质在石墨烯表面的直接电子转移和石墨烯在酶传感器、免疫传感器、基因传感器以及一些生物小分子的检测等方面的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号