首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a simple, scalable approach to improve the interfacial characteristics and, thereby, the performance of commonly used polyolefin based battery separators. The nanoparticle-coated separators are synthesized by first plasma treating the membrane in oxygen to create surface anchoring groups followed by immersion into a dispersion of positively charged SiO(2) nanoparticles. The process leads to nanoparticles electrostatically adsorbed not only onto the exterior of the surface but also inside the pores of the membrane. The thickness and depth of the coatings can be fine-tuned by controlling the ζ-potential of the nanoparticles. The membranes show improved wetting to common battery electrolytes such as propylene carbonate. Cells based on the nanoparticle-coated membranes are operable even in a simple mixture of EC/PC. In contrast, an identical cell based on the pristine, untreated membrane fails to be charged even after addition of a surfactant to improve electrolyte wetting. When evaluated in a Li-ion cell using an EC/PC/DEC/VC electrolyte mixture, the nanoparticle-coated separator retains 92% of its charge capacity after 100 cycles compared to 80 and 77% for the plasma only treated and pristine membrane, respectively.  相似文献   

2.
《Mendeleev Communications》2022,32(3):287-297
Moving towards carbon-free energy and global commercialization of electric vehicles stimulated extensive development in the field of lithium-ion batteries (LIBs), and to date, many scientific and technological advances have been achieved. The number of research works devoted to developing high-capacity and stable materials for lithium- ion and lithium metal batteries (LMBs) is constantly rising. This review covers the main progress in the development of LIBs and LMBs based on research works published in 2021. One of the main goals in the recent publications is to solve the problem of instability of layered nickel-rich lithium– nickel–cobalt–manganese oxides (Ni-rich NMC) cathodes, as well as silicon anodes. Improving the stability of NMC cathodes can be achieved by doping them with cations as well as by coating the oxides’ surfaces with protective layers (organic polymers and inorganic materials). The most effective strategies for dampening volumetric changes in silicon anodes include using porous silicon structures, obtaining composites with carbon, coating silicon-containing particles with inorganic or polymeric materials, and replacing standard binder materials. Much work has been devoted to suppressing dendrite formation in LMBs by forming stable coating layers on the surface of lithium metal, preparing composite anodes and alloys, and changing the composition of electrolytes. At the same time, in the field of electrolyte development, many research works have been devoted to the search for new hybrid polymer electrolytes containing lithium-conducting inorganic materials.  相似文献   

3.
Energy sustainable development has stimulated the pursuit of an eco-friendly energy storage system.Carbon peak and neutrality targets oriented energy storage de...  相似文献   

4.
正1 Introduction As environmental pollution continues to worsen,governments are increasing their efforts to develop green transport vehicles,such as electric vehicles and hybrid cars.Efficient energy storage and conversion systems are urgently needed  相似文献   

5.
The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries (L...  相似文献   

6.
Lorentz force theory demonstrates that electric current density and magnetic force are proportional, indicating that they compensate each other. In a battery operated at high magnetic forces, the electrons in the active material move fast in a specific magnetic field. γ-Fe2O3, a highly magnetic material, is used to prepare LiFePO4 electrodes to study the effect of the Lorentz force on lithium-ion battery performance. The magnetic field created by γ-Fe2O3 induces magnetic forces on the charged LiFePO4 particles, accelerating electron movement. Superconducting quantum interference measurements reveal that saturation magnetization and remanence are prominent when γ-Fe2O3 is added to the LiFePO4 electrodes. The LiFePO4 electrode containing 15 wt% γ-Fe2O3 led to superior battery capacity (69.8 mAh g 1 at 10C) compared with the pure LiFePO4 electrode (1.8 mAh g 1 at 10C). In this study, Lorentz force theory is applied to improve the specific capacity and cycle life at high current rates of a battery containing LiFePO4 cathode materials, suggesting that incorporating γ-Fe2O3 into the cathode is an easy and cheap strategy for increasing the power density and cycle life of lithium-ion batteries.  相似文献   

7.
The emergency of high-power electrical appliances has put forward higher requirements for the power density of lithium-ion batteries.Vanadium oxides with large ...  相似文献   

8.
Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cathode serves as a key component in LIB,its properties significantly affect the performance of the whole system.Recently,the cathode surface modification based on coating technique has been widely employed to enhance the electrochemical performances by improving the material conductivity,stabilising the physical structure of materials,as well as preventing the reactions between the electrode and electrolyte.In this work,we reviewed the present of a number of promising cathode materials for Li-ion batteries.After that,we summarized the very recent research progress focusing on the surface coating strategies,mainly including the coating materials,the coating technologies,as well as the corresponding working mechanisms for cathodes.At last,the challenges faced and future guidelines for optimizing cathode materials are discussed.In this study,we propose that the structure of cathode is a crucial factor during the selection of coating materials and technologies.  相似文献   

9.
A series of LiMn1-x V x PO4 samples have been synthesized successfully via a conventional solid-state reaction method. The active materials are characterized by x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical performances of the samples are tested using cyclic voltammetry, electrochemical impedance spectroscopy, and charge/discharge measurement techniques. It is confirmed that the samples are in single phase when the content of vanadium (x) is lower than 0.05. If that content is higher than 0.1, the samples are shown to contain an additional conductive phase of Li3V2(PO4)3. The vanadium doping significantly enhances the electrochemical properties of LiMnPO4. It is underlined that the optimal ratio for a low-vanadium doping with the best electrochemical performance is 0.1 and this material exhibits a corresponding initial charge and discharge capacity of 98.9 and 98.1 mAh g?1 at 0.1 C under 50 °C. The capacity retention is higher than 99 % after 30 cycles. The dramatic electrochemical improvement of the LiMnPO4 samples is ascribed to the strengthened ability of lithium-ion diffusion and enhanced electronic conductivity for the V-doped samples.  相似文献   

10.
Nanocrystalline cellulose (NCC)-reinforced poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) composite mats have been prepared by electrospinning method. Polymer electrolytes formed by activating the composite mats with 1 M lithium bis(trifluoromethanesulfonyl)imide/1-butyl-3-methypyrrolidinium bis(trifluoromethanesulfonyl)imide electrolyte solution. The addition of 2 wt% NCC in PVdF-HFP improved the electrolyte retention and storage modulus of the separator by 63 and 15 %, respectively. The developed electrolyte demonstrated high value of ionic conductivity viz. 4?×?10?4?S?cm?1 at 30 °C. Linear scan voltammetry revealed a wide electrochemical stability of the composite mat separator up to 5 V (vs. Li+/Li). Cyclic voltammetry of the polymer electrolyte with a graphite electrode in 2.5 to 0 V (vs. Li+/Li) potential range showed a reversible intercalation/de-intercalation of Li+ ions in the graphite. No peaks were observed related to the reduction of the electrolyte on the anode.  相似文献   

11.
Shen  Bin  Zuo  Pengjian  Fan  Peng  Yang  Jie  Yin  Geping  Ma  Yulin  Cheng  Xinqun  Du  Chunyu  Gao  Yunzhi 《Journal of Solid State Electrochemistry》2017,21(4):1195-1201
Journal of Solid State Electrochemistry - NaAlO2-coated LiCoO2 materials have been synthesized as cathode materials for lithium-ion batteries. The NaAlO2 layer is coated on the LiCoO2 particles...  相似文献   

12.
We have developed a Si/graphene oxide electrode synthesized via ultrasonication-stirring method under alkaline condition. Scanning electron microscopy(SEM), transmission electron microscope(TEM), EDS dot-mapping and high-resolution transmission electron microscopy(HRTEM) results show that Si particles are evenly dispersed on the graphene oxide sheets. The electrochemical performance was investigated by galvanostatic charge/discharge tests at room temperature. The results revealed that Si/graphene oxide electrode exhibited a high reversible capacity of 2825 mAh/g with a coulombic efficiency of 94.6%at 100 mA/g after 15 cycles and a capacity retention of 70.8% after 105 cycles at 4000 mA/g. These performance parameters show a great potential in the high-performance batteries application for portable electronics, electric vehicles and renewable energy storage.  相似文献   

13.
The nanostructured Si/graphite composites embedded with the pyrolyzed polyethylene glycol was synthesized from coarse silicon and natural graphite by a facile and cost-effective approach. The Si/C nanocomposite showed the fluffy carbon-coated structure, which was confirmed by the SEM and TEM measurements. The as-obtained Si/C nanocomposite, employed as anode material in lithium-ion batteries, exhibited significantly enhanced rate capability and cycling stability. The improved electrochemical stability of the composite was evaluated by EIS and galvanostatically charge/discharge test. A reversible capacities as high as 85% and 91% of the initial charge capacities, could be maintained for the Si/C nanocomposite electrode after 40 cycles under the high current densities of 500 and 1,000?mA?g?1, respectively. The relatively low cost and excellent electrochemical capability of the Si/C nanocomposite would well meet the challenge in rapid charge and discharge for large-size lithium-ion rechargeable batteries.  相似文献   

14.
A heat-resistant boehmite-coated polypropylene (PP) membrane has been successfully fabricated and its potential application as a promising separator in the lithium-ion battery was explored. The boehmite powders with average sizes of 0.78, 1.03, and 1.72 μm, respectively, were used to fabricate the coated membrane. It was demonstrated that the coated membrane prepared by boehmite with a 0.78-μm size showed superior heat tolerance and proper air permeability. As compared to the commercialized PP membrane, such coated membrane presented improved electrolyte uptake, better interface stability, and enhanced ionic conductivity. In addition, the lithium iron phosphate (LiFePO4)/Li cell using this composite membrane exhibited better rate capability and cycling retention than that using PP membrane owing to its facile ion transport and excellent interfacial compatibility. The coating layer showed an advantage on solid electrolyte interface film formation and greatly reduced charge transfer resistance. All these fascinating characteristics would boost the application of this composite membrane for high-performance lithium-ion battery.  相似文献   

15.
锂离子电池(LIBs)因高能量密度和长循环寿命而被广泛用于储能电子产品、电动汽车等众多领域。然而,在锂离子电池首次充放电过程中,固体电解质界面(SEI)膜的形成会造成电解液发生不可逆分解、初始活性Li+损失(ALL)和不可逆容量损失,会影响电池体系容量和能量密度的发挥,对于硅基负极电池体系而言尤为显著。基于这一问题,亟需开发各种补锂策略来降低活性锂损失,有效提高电池体系的首次库仑效率(ICE),从而实现更高的能量密度和循环稳定性。结合现阶段所做工作,从正负极角度出发,将预锂化补锂策略分为正极预锂化和负极预锂化,主要包括富锂正极材料、富锂预锂化试剂、惰性锂金属粉、含锂有机溶液等一系列预锂化补锂措施。通过系统的分类、比较与总结后,对预锂化以实现电池的高能量密度和长循环寿命提出建议,有助于为预锂化策略走向商业化提供启示。  相似文献   

16.
Microwave-assisted synthesis has continued to be adopted for the preparation of high-performance manganese-based cathode materials for lithium-ion batteries. The technique is fast, energy-efficient and has significant positive impacts on the general physico-chemical properties of the cathode materials: LiMn2O4, LiMn1.5Ni0.5O4, and lithium nickel manganese cobalt oxides. Despite the advantages of microwave-assisted synthesis, this review reveals that the application is still limited. In our opinion, increased basic knowledge of the microwave process and availability of safe and reliable instrumentation could be a great opportunity for the commercial realization of low-cost and energy-dense Mn-based cathode materials for the next-generation lithium-ion batteries.  相似文献   

17.
Fast-charging is considered to be a key factor in the successful expansion and use of electric vehicles.Current lithium-ion batteries(LIBs) exhibit high energy density, enabling them to be used in electric vehicles(EVs) over long distances, but they take too long to charge. In addition to modifying the electrode and battery structure, the composition of the electrolyte also affects the fast-charging capability of LIBs. This review provides a comprehensive and in-depth overview of the research pr...  相似文献   

18.
Guo P  Song H  Chen X  Ma L  Wang G  Wang F 《Analytica chimica acta》2011,(2):17818-155
The structure and electronic properties of graphene nanosheet (GNS) render it a promising conducting agent in a lithium-ion battery. A graphite electrode loaded with GNS exhibits superior electrochemical properties including higher rate performance, increased specific capacity and better cycle performance compared with that obtained by adding the traditional conducting agent–acetylene black. The high-quality sp2 carbon lattice, quasi-two-dimensional crystal structure and high aspect ratio of GNS provide the basis for a continuous conducting network to counter the decrease in electrode conductivity with increasing number of cycles, and guarantee efficient and fast electronic transport throughout the anode. Effects of GNS loading content on the electrochemical properties of graphite electrode are investigated and results indicate that the amount of conductive additives needed is decreased by using GNS. The kinetics and mechanism of lithium-storage for a GNS-loaded electrode are explored using a series of electrochemical testing techniques.  相似文献   

19.
The SnO2 sheet/graphite composite was synthesized by a hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD and FE-SEM. The electrochemical performance of SnO2 sheet/graphite composite was measured by galvanostatic charge/discharge cycling and EIS. The first discharge and charge capacities are 1,072 and 735 mAh g?1 with coulombic efficiency of 68.6 %. After 40 cycles, the reversible discharge capacity is still maintained at 477 mAh g?1. The results show that the SnO2 sheet/graphite composite displays superior Li-battery performance with large reversible capacity and good cyclic performance.  相似文献   

20.
储能技术的革命性变化对下一代锂离子电池(LIBs)负极材料提出了更高的要求。近年来,一类具有复杂化学计量比的新型材料——高熵氧化物(HEOs)逐渐进入人们的视野并走向繁荣。理想的元素可调节性和吸引人的协同效应使HEOs有望突破传统阳极的综合性能瓶颈,为电化学储能材料的设计和发展提供新的动力。本文分别从化学成分调控和结构设计2个方面结合本课题组近年来的研究及国内外重要文献,综述了HEOs作为LIBs负极材料的研究进展。在化学成分调控方面通过金属杂原子掺杂、非金属杂原子掺杂来提高HEOs的本征活性。在结构设计方面,通过构建一维结构、二维结构、三维结构、空心结构以及复合碳材料来增加HEOs的反应活性位点数量,从而提高储锂性能。最后,对HEOs在LIBs领域的发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号