首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碳点(carbon dots,CDs)作为一种具有优良生物相容性、低毒性和表面功能可调的新型碳基纳米材料,在生物传感领域具有极大的应用潜力.本文对碳点的生物效应、发光性质及其发光机理进行了简述,并根据传感机制的不同,将CDs在生物传感领域的应用分为荧光(fluorescence,FL)传感器、电致发光(electroc...  相似文献   

2.
《中国化学快报》2021,32(12):3653-3664
Carbon dots (CDs), as a new member of carbon nanostructures, have been widely applied in extensive fields due to their exceptional physicochemical properties. While, the emissions of most reported CDs are located in the blue to green range under the excitation of ultraviolet or blue light, which severely limits their practical applications, especially in photovoltaic and biological fields. Studies that focused on synthesizing CDs with long-wavelength (red to near-infrared) emission/excitation features (simply named L-w CDs) and exploring their potential applications have been frequently reported in recent years. In this review, we analyzed the key influence factors for the synthesis of CDs with long wavelength and multicolor (containing long wavelength) emissive properties, discussed possible fluorescence mechanism, and summarized their applications in sensing and cancer theranostics. Finally, the existing challenges and potential opportunities of L-w CDs are presented.  相似文献   

3.
Nanocomposite hydrogels based on carbon dots(CDs) and polymers have emerged as new materials with integrated properties of individual components,leading to their important applications in the field of soft nanomaterials.This perspective highlights recent advances in the development of nanocomposite hydrogels from CDs and polymers.We review the preparation methods of nanocomposite hydrogels based on CDs and polymers,and emerging applications of these nanocomposite hydrogels such as environmental ...  相似文献   

4.
Carbon dots (CDs) are new materials with applications in bioimaging, optical devices, catalysis, and many other fields. Their advantages, such as ease of large-scale preparation, low-costing precursors, highly tunable photoluminescence, satisfactory biocompatibility, and photostability against photobleaching, make them competitive alternatives to conventional semiconductor-based quantum dots and organic dyes. To overwhelm other luminescent materials in applications, their functionalities still need to be improved in spite of the abovementioned advantages. In recent years, it has been proven that heteroatom doping is an effective approach to improve the optical and electronic performance of CDs by tuning their carbon skeleton matrices and chemical structures. In this review, the development of non-metal-heteroatom-doped CDs, including heteroatom categories, preparation methods, and physicochemical properties, are discussed. Progressive trends in heteroatom-doped CDs are also discussed at the end of this review.  相似文献   

5.
纳米碳点是碳纳米材料家族的新成员,近年来在国内外受到广泛关注。与传统的荧光染料和半导体量子点发光材料相比,碳点不仅具有优异的光学性能及尺寸效应,且具有制备成本低廉、生物相容性好、易于官能化、能带结构可调等优势。本文在理清有关碳点概念的基础之上,介绍了碳点结构特征和制备策略,着重综述了纳米碳点在生物成像与诊疗、传感器件、催化、光电器件和能量存储领域的最新研究进展,探讨了碳点研究目前存在的问题及未来的发展方向。  相似文献   

6.
Graphene has attracted considerable attention in multidisciplinary research fields and shown various promising applications due to its unique structure and extraordinary physicochemical properties. This review covers the latest advances in graphene materials-based chemiluminescence (CL) for sensing. Chemiluminescence resonance energy transfer and luminescence quenching of graphene materials are discussed. Graphene materials, such as graphene nanosheets, graphene quantum dots, graphene oxide, and reduced graphene oxide have been employed successfully in CL systems in recent years. Graphene materials can be utilized as catalysts, platforms, and energy acceptors to improve the performance of CL. Possible challenges and future perspective on this topic are also presented.  相似文献   

7.
《中国化学快报》2021,32(12):3907-3910
Carbon dots (CDs) with fluorescence (FL) and room-temperature phosphorescence (RTP) optical properties have attracted dramatically growing interest in anti-counterfeiting application. Herein, color-tunable and stable FL and ultralong RTP (to naked eyes ~14 s) are successfully achieved in CDs system. Encoding information and patterns fabricated by directly screen-printing method are invisible to eyes under natural light. Interestingly, clear and multicolor patterns with tunable FL and RTP emissions are identified under the 365 nm, 395 nm and 465 nm excitation and removal of them, indicating potential application of carbon dots with different FL and RTP outputs in the high-level photonic anti-counterfeiting field.  相似文献   

8.
Carbon dots (CDs), a kind of phototheranostic agent with the capability of simultaneous bioimaging and phototherapy [i.e., photodynamic therapy (PDT) or photothermal therapy (PTT)], have received considerable attention because of their remarkable properties, including flexibility for surface modification, high biocompatibility, low toxicity and photo‐induced activity for malignant tumor cells. Among numerous carbon sources, it has been found that natural biomass are good candidates for the preparation of CD phototheranostic agents. In this study, pheophytin, a type of Mg‐free chlorophyll derivative and also a natural product with low toxicity, was used as a raw carbon source for the synthesis of CDs by using a microwave method. The obtained hydrophobic CDs exhibited a maximum near‐infrared (NIR) emission peak at approximately 680 nm, and high singlet oxygen (1O2) generation with a quantum yield of 0.62. The self‐assembled CDs from the as‐prepared CDs with DSPE‐mPEG2000 retained efficient 1O2 generation. The obtained carbon dot assembly was not only an efficient fluorescence (FL) imaging agent but also a smart PDT agent. Our studies indicated that the obtained hydrophilic CD assembly holds great potential as a new phototheranostic agent for cancer therapy. This work provides a new route for synthesis of CDs and proposes a readily available candidate for tumor treatment.  相似文献   

9.
荧光碳点探针是近几年来发展起来的一种新型荧光探针,具有传统有机染料、荧光染色蛋白及一般荧光纳米材料无法比拟的独特优势,如具有良好的水溶性、化学惰性、低毒性、易于功能化、抗光漂白性、可调谐和生物相容性等优异性能,因而引起研究者的广泛关注。目前已发展水热法等近十种较为经济便捷的方法,可进行大规模的荧光碳点制备,在细胞功能研究及细胞表面和内部功能分子的探测、组织的成像、病菌的定位等方面得到了较为广泛的应用。笔者对近年来荧光碳点的合成方法、依赖于碳点尺寸和波长等性质的发光性能,以及荧光碳点在生物成像等方面的应用作一简要综述,并对其在药用植物病理方面的应用提出展望,期望为丰富荧光碳点在生物成像领域的应用提供一定的借鉴和参考。  相似文献   

10.
远宁  陈佳  关明  赵亮  邱洪灯 《色谱》2020,38(1):36-40
碳点(CDs)具有生物相容性好、毒性低、稳定性好等优点,目前已广泛应用于生物成像、传感、光催化等领域。近年来,以CDs为吸附剂和分离材料的样品前处理和色谱分离研究也引起了研究者的极大兴趣。该文对CDs在样品前处理和色谱分离中的应用进行了综述,并对其发展前景进行了展望。  相似文献   

11.
Carbon dots (CDs) have excellent optical properties, low toxicity and easy preparation, which have led to them being widely used in biomedicine, sensing and optical devices. However, although great progress has been made in the preparation of CDs, the detailed exploration of their photoluminescence (PL) mechanism is still under debate due to their complex structures and surface functionalities. Here, we proposed a single change in the pH of the synthesis condition, which had no effect on the CDs intrinsic core states and avoided the mutual influence of multiple PL origins. The m-phenylenediamine (m–PD) served as a carbon source, whose protonation degree determined the surface state of the resulting CDs and the accompanying fluorescence characteristics. The as-obtained CDs materials can be applied in the chemical sensor and anti-counterfeiting fields in a targeted manner. Therefore, our work not only contributes to the explanation of the CDs PL mechanism, but also obtains a series of CDs materials with controllable PL properties.  相似文献   

12.
《中国化学快报》2023,34(3):107478
Metal-organic frameworks (MOFs) with large specific surface area, considerable pore volume, controllable structure, and high concentration of active metal sites have been applied widely in researches like catalysis and sensing. However, potential applications of MOFs in both photocatalysis and luminescence sensors are facing major challenges arising from their severe charge recombination, low utilization of solar energy, low quantum yield, limited charge transfer between the metal ions/clusters and the ligand. Recent studies revealed that rational introduction of carbon dots (CDs) with excellent optical properties, unique quantum confinement and high conductivity can greatly enhance the functions of MOFs. In this paper, typical synthesis methods of these CD-MOF composites as well as their potential applications in photocatalysis and sensing are reviewed with emphasis. Representative examples of these CD-MOF composites are discussed, and key features and advantages of CD-MOF composites that will facilitate future applications are highlighted.  相似文献   

13.
李延琪  王昱  冯亮 《色谱》2020,38(7):732-740
作为新型的传感材料,碳点在过去10年中受到了广泛的关注。由于制备方法相对单一,未经功能化碳点的表面有效传感作用位点的种类受到了限制(多为羧基、羟基、醛基等含氧官能团),导致其选择性和灵敏度不佳。因此,功能化在开发碳点传感器中扮演了重要的角色。碳点的功能化主要分为两大类:掺杂改性及表面修饰。掺杂改性是在碳点的骨架结构中引入新的元素,一方面能够实现碳点的光学改性,另一方面也可以在其表面形成新的作用位点用于传感。表面修饰是在碳点表面原有结构的基础上,通过共价或非共价的形式与其他功能结构相结合,从而拓展碳点的选择性并提升其灵敏度。本文对近8年来碳点功能化及其在食品安全检测领域应用的相关研究进展进行了系统性的梳理,为开发基于功能化碳点的食品快检设备提供一些新的思路。  相似文献   

14.
A large amount of emerging research on carbon dots (CDs) has been gradually improving the understanding of their structures, properties and emission mechanism. Distinct from the dominating status of quantum confinement effect in quantum dots, CDs always suffer from the complicated optical properties, deriving from the large differences in raw materials and synthesis methods. The diverse concepts and species puzzle researchers and hinder the further study. Thus, there is an urgent need to unify the definition and clarify the confused relation of CDs. Herein, we classify the raw materials of CDs synthesis into small molecules and polymers, and discuss CDs from the aspects of raw materials. We believe that the polymer-like structures reserved in CDs are universal no matter from the condensation of small molecules or the direct inheritance of polymers. Moreover, many similarities are concluded between CDs and polymers through serious comparisons and enough evidences. The formation processes of CDs are mostly polymerization and the obtained CDs always possess polymeric characteristics, such as abundant reactive functional groups, polydispersity of products, highly crosslinked network structure and other similar properties to non-conjugated fluorescent polymers. Therefore, the new concept, polymer carbon dots (PCDs), is put forward to generalize all kinds of CDs based on the summary of related reports. Besides, the complicated influence factors of photoluminescence (PL) are discussed and mainly classified as molecule state, carbon core state, surface state and crosslink enhanced emission (CEE) effect. In general, this review puts forward PCDs as a unified definition of reported CDs, and summarizes the polymeric characteristics of PCDs from formation process and product properties, as well as simultaneously illustrates the PL mechanism.  相似文献   

15.
The development of cost‐effective and environmentally friendly photocatalysts and photosensitizers has received tremendous attention because of their potential utilization in solar‐light‐harvesting applications. In this respect, carbon dots (CDs) prepared by bottom‐up methods have been considered to be promising light‐harvesting materials. Through their preparation from various molecular precursors and synthetic methods, CDs exhibit excellent optical and charge‐transfer properties. Furthermore, their photophysical properties can be readily optimized and enhanced by means of doping, functionalization, and post‐synthetic treatment. In this review, we summarize the recent progress in CDs synthesized using bottom‐up approaches. These CDs exhibit strong light absorption and unique electron donor/acceptor capabilities for light‐harvesting applications. We anticipate that this review will provide new insights into novel types of photosensitizers and photocatalysts for a wide range of applications.  相似文献   

16.
Recent years have witnessed a rapid development of carbon dots (CDs), due to their outstanding luminescence properties and excellent biocompatibility. However, the internal structure and photoluminescent (PL) mechanism of CDs are still the subject of considerable debate, which is due to the fact that reaction products usually contain mixtures of several CD fractions as well as molecular intermediate and side products. Therefore, careful purification of the CDs is significant for analysis of structure and luminescence mechanism. Here, multicolor emission CDs were prepared by a one-pot pyrolysis of citric acid in formamide. Then, the precipitation method, dialysis and gel permeation chromatography (GPC) are successively employed to purify the multicolor emission CDs. This post-treatment allowed us to compare the optical properties of CDs obtained by different separation methods and provide a valuable guidance for the purification of CDs.  相似文献   

17.
Carbon dots (CDs), a new class of fluorescent carbon nanoparticles (less than 10 nm in size), have been widely applied in various fields, including sensors, bioimaging, catalysis, light‐emitting devices (LEDs), and photoelectronic devices, owing to their unique properties such as low toxicity, bio‐compatibility, high photostability, easy surface modification, and up‐conversion fluorescence, over the past decades. Recently, multiple‐color‐emissive CDs, especially red‐emissive CDs (RCDs), have drawn much attention owing to their unique advantages, like the ability to penetrate the animal bodies without the disturbance of strong tissue autofluorescence, multiple‐color fluorescence displaying or sensing, and the capacity to be one essential component to obtain white LED (WLED). In this review, we focused on the progress of recently‐emerging RCDs in the past five years, including their synthetic methods (hydrothermal, solvothermal, reflux condensation and microwave techniques), influencing factors (precursors, solvents, elements doping, surface chemistry) and various applications (bioimaging, sensor, photocatalysis and WLEDs), with a perspective on the future advancements.  相似文献   

18.
As a new type of carbon-based fluorescent nanomaterials, carbon dots(CDs) are provided with the advantages of small size, excellent photoluminescence(PL) property, easy surface modification, robust stability,good water solubility and biocompatibility, which endow them with great potential in sensing. In this review, we first describe the preparation of CDs from different starting materials via various techniques, and pre-/post-modification strategies to modulate their PL properties. Second, we o...  相似文献   

19.
In recent years, carbon-based quantum dots as luminophores and co-reactants have aroused broad interest for their ability to function in electrochemiluminescence (ECL) sensors due to their unique features, including excellent biocompatibility, low toxicity, and water solubility. In this mini review, the synthesis methods of carbon-based quantum dots are firstly introduced. Then, the mechanism of carbon-based quantum dots as luminophores and co-reactants and their latest progress application in the detection of heavy metal ions are explored. Finally, the current challenges and potential future development directions of carbon-based quantum dots in ECL sensing filed for heavy metal ions analysis are summarized.  相似文献   

20.
Carbon dots(CDs) with multi-color emissive properties and a high photoluminescent quantum yield(PLQY) have attracted great attention recently due to their potential applications in chemical,environmental,biological and photo-electronic fields.Solvent-dependent effect in photoluminescence provides a facial and effective approach to tune the emission of CDs.In this study,green emissive nitrogen-doped carbon dots(N-CDs) are synthesized from p-hydroquinone and ethylenediamine through a simple hydrothermal method.The as-prepared N-CDs possess a robust excitation-independent green luminescence and a high PLQY of up to 15.9%.Further spectroscopic characterization indicates that the high PLQY is achieved by the balance of nitrogen doping states and the surface passivation extent in CDs.The N-CDs also exhibit solvent-dependent multi-color emissive property and distinct PLQY in different solvents(the maximum can reach up to 25.3%).Furthermore,the as-prepared N-CDs are applied as fluorescence probes to detect acetone and H2O2 in water.This method has exhibited a low detection limit of acetone(less than 0.1 %) and a quick and linear response to the H_2O_2 with the concentration from 0 to 120 μmol/L.This work broadens the knowledge of applying CDs as probes in the bio and chemical sensing fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号