首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用解析方法研究了置于线性弹性地基上的Euler-Bernoulli梁在均匀升温载荷作用下的临界屈曲模态跃迁特性;分别在两端不可移简支和夹紧边界条件下,给出了弹性梁屈曲模态跃迁点的地基刚度值以及屈曲载荷值的精确表达式,并分析了模态跃迁特点.结果表明:随着地基刚度参数值的增大临界屈曲模态通过跃迁点从低阶次向高阶次跃迁;两端简支梁的模态跃迁具有突变特性,而两端夹紧梁的模态跃迁则是一个缓慢变化过程,它是通过端截面的弯矩或曲率的正负号改变实现的.  相似文献   

2.
An axially compressed beam resting on a non-linear foundation undergoes a loss of stability (buckling) via a supercritical pitchfork bifurcation. In the post-buckled regime, it has been shown that under certain circumstances the system may experience a secondary bifurcation. This second bifurcation destablizes the primary buckling mode and the system “jumps” to a higher mode; for this reason, this phenomenon is often referred to as mode jumping. This work investigates two new aspects related to the problem of mode jumping. First, a three mode analysis is conducted. This analysis shows the usual primary and secondary buckling events. But it also shows stable solutions involving the third mode. However, for the cases studied here, there is no natural loading path that leads to this solution branch, i.e. only a contrived loading history would result in this solution. Second, the effect of an initial geometric imperfection is considered. This breaks the symmetry of the system and significantly complicates the bifurcation diagram.  相似文献   

3.
We consider an infinite continuous elastic beam that interacts with linearly elastic foundation and is under compression. The problem of the beam buckling is formulated and analyzed. Then the optimization of beam against buckling is investigated. As a design variable (control function) we take the parameters of cross-section distribution of the beam from the set of periodic functions and transform the original problem of optimization of infinite beam to the corresponding problem defined at the finite interval. All investigations are on the whole founded on the analytical variational approaches and the optimal solutions are studied as a function of problems parameters.  相似文献   

4.
Static and free vibration analyses of straight and circular beams on elastic foundation are investigated. The Timoshenko beam theory is adopted in the derivation of the governing equation. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method. The static and free vibration analyses of beams on elastic foundation are analyzed through various examples.  相似文献   

5.
On the basis of von Kárman equations,the axisymmetric buckling and post-bucklingof annular plates on anelastic foundation is(?)tematically discussed byusing shootingmethods.  相似文献   

6.
Chaotic vibration of beams resting on a foundation with nonlinear stiffness is investigated in this paper. Cosine–cosine function is employed in modeling of the reciprocating load. The equation of motion is derived and solved to obtain corresponding Poincaré section in phase–space. Lyapunov exponent as a criterion for chaos indication is obtained. Dynamic behavior of the beam is examined in resonance condition. Homoclinic orbits are captured and their corresponding Melnikov's functions are established. A parametric study is then carried out and effects of linear and nonlinear parameters on the chaotic behavior of the system are studied.  相似文献   

7.
Post-buckling behaviour of sandwich plates with functionally graded material (FGM) face sheets under uniform temperature rise loading is considered. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation, which acts in both compression and tension. The derivation of equations is based on the first-order shear deformation plate theory. Thermomechanical non-homogeneous properties of FGM layers vary smoothly by the distribution of power law across the thickness, and temperature dependency of material constituents is taken into account. Using the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect sandwich plates with FGM face sheets are derived. The boundary conditions for the plate are assumed to be simply supported in all edges. The governing equations are reduced to two coupled equation in terms of stress function and lateral deflection. Employing the single mode approach combined with Galerkin technique, an approximate closed-form solution is presented to calculate the critical buckling temperature and post-buckling equilibrium path of the plate. Presented numerical examples contain the influences of power law index, sandwich plate geometry, geometrical imperfection, temperature dependency, and the elastic foundation coefficients.  相似文献   

8.
Geometrically non-linear deformation of axially extensional Timoshenko beams subjected mechanical as well thermal loadings were characterized by a system of 7 coupled and highly non-linear ordinary differential equations, which results in a complicated two-point boundary-value problem. By using shooting method this kind of problem can be numerically solved efficiently. Based on the above-mentioned mathematical formulation and numerical procedure, analysis of large thermal deflections for Timoshenko beams, subjected transversely non-uniform temperature rise and with immovably pinned–pinned as well as fixed–fixed ends, is presented. Characteristic curves showing the relationships between the beam deformation and temperature rise are illustrated. Especially, the effects of shear deformation on the bending and buckling response are quantitatively investigated. The numerical results show, as we know, that shear deformation effects become significant with the decrease of the slenderness and with the increase of the shear flexibility.  相似文献   

9.
We study the elastic stability of infinite inhomogeneous thin plates on an elastic foundation under in-plane compression. The elastic stiffness constants depend on the coordinate variable in the thickness direction of the plate. The elastic foundation is represented as a Winkler-type model characterized by linear and nonlinear spring constants. First we derive the Föppl–von Kármán equations by taking variations of the elastic strain energy. Next we develop the linear stability analysis of the plate under uniform in-plane compression and explicitly derive the critical loads and wave numbers for particular three cases. The effects of the material inhomogeneity, material orthotropy and loading orthotropy on the critical states are examined independently. Finally, we perform a weakly nonlinear analysis of the plate at the onset of the buckling instability. With the multiple scales method, the amplitude equations for the unstable modes that provide insight into the mode type and its amplitude are derived and then the effect of the material inhomogeneity on buckling modes are evaluated qualitatively.  相似文献   

10.
The postbuckling response of perfect and geometrically imperfect elastic columns resting on an elastic Winkler type foundation is thoroughly discussed. This is established by employing an approximate analytic technique leading to very reliable results in the vicinity of the critical state. It was found that the critical state of perfect columns is a stable symmetric bifurcation point and consequently there is no sensitivity to initial geometrical imperfections. Moreover, a simple but readily analyzed mechanical model is proposed to simulate the salient features of buckling mechanism of the column on elastic foundation with those of the model. The simplicity, reliability and efficiency of the proposed analysis as well as the successful modeling of the buckling mechanism of the column by that of a single mode mechanical model are illustrated with the aid of numerical examples.  相似文献   

11.
IntroductionAxiallycompressedstresseswilloccurinaconstrainedelasticbeamsubjectedtoatemperaturerising .Ifthemagnitudeofthecompressedstressesexceedacertainlimit,thermalbucklingoftheheatedbeam ,whichisoutofitsinitialconfiguration ,willtakeplace .So ,investigationsonthermalbucklingofrodsandbeamsareverynecessaryandimportantforthedesignofstructuresworkinginhightemperatureenvironmentsandofsomethermalsensitiveelasticelements.Becausethermalelasticpost_bucklingofbeamsandrodsareinducedbythethermallyaxial…  相似文献   

12.
易伟建  刘霞 《计算力学学报》2003,20(4):467-471489
利用试验得到的振动参数评估结构的破损情况,是当前结构工程学科十分活跃的领域。由于弹性地基梁的振动模态受地基和梁两方面因素的影响,其损伤诊断问题变得十分复杂。本文通过对两靖自由弹性地基梁的灵敏性分析发现弹性地基梁的前两阶自由模态主要与地基有关,利用这一特性构造了两级识别的方法,并引入优化领域寻优能力极强的遗传算法进行识别,找到了令人满意的答案。  相似文献   

13.
A new simplified structural model and its governing equations for beams on elastic foundations with elastic coupling are proposed. This modeling system is simple but appropriate for the initial structural design of large-scale submerged floating-beam structures moored by tension legs spaced at uniform interval along the beam. The model is actually for beam on discrete elastic supports rather than on continuous elastic foundations. Therefore, the governing equations are based on finite difference calculus and solutions for beams on discrete elastic supports with elasticity coupling are also proposed. To clarify the applicability limit of the proposed model, the equivalence between a beam on discrete elastic supports and that on continuous elastic foundation is investigated by comparisons of characteristic solutions.  相似文献   

14.
This paper proposes a Rayleigh–Ritz procedure for localized buckling of a strut on a non-linear elastic foundation. Firstly, the deflected shape of a strut is expanded into a series of Hermite orthogonal functions, which are proved energy-integrable in an infinite region. Secondly, the errors of the numerical integrations of Hermite functions on the infinite region are investigated and the suitable integral limit is proposed. Through the numerical investigation, it is demonstrated that the first thirty Hermite functions are usually enough to approximate the localized buckling pattern. The proposed method overcomes the disadvantages of the traditional methods, in which the trial functions in either Rayleigh–Ritz or Galerkin analysis are based on the perturbation analyses of the corresponding non-linear differential equation.  相似文献   

15.
In this study, simple analytical expressions are presented for large amplitude free vibration and post-buckling analysis of functionally graded beams rest on nonlinear elastic foundation subjected to axial force. Euler–Bernoulli assumptions together with Von Karman’s strain–displacement relation are employed to derive the governing partial differential equation of motion. Furthermore, the elastic foundation contains shearing layer and cubic nonlinearity. He’s variational method is employed to obtain the approximate closed form solution of the nonlinear governing equation. Comparison between results of the present work and those available in literature shows the accuracy of this method. Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the effect of vibration amplitude, elastic coefficients of foundation, axial force, and material inhomogenity are presented for future references.  相似文献   

16.
Summary  The bending solutions of the Euler–Bernoulli and the Timoshenko beams with material and geometric discontinuities are developed in the space of generalized functions. Unlike the classical solutions of discontinuous beams, which are expressed in terms of multiple expressions that are valid in different regions of the beam, the generalized solutions are expressed in terms of a single expression on the entire domain. It is shown that the boundary-value problems describing the bending of beams with jump discontinuities on discontinuous elastic foundations have more compact forms in the space of generalized functions than they do in the space of classical functions. Also, fewer continuity conditions need to be satisfied if the problem is formulated in the space of generalized functions. It is demonstrated that using the theory of distributions (i.e. generalized functions) makes finding analytical solutions for this class of problems more efficient compared to the traditional methods, and, in some cases, the theory of distributions can lead to interesting qualitative results. Examples are presented to show the efficiency of using the theory of generalized functions. Received 6 June 2000; accepted for publication 24 October 2000  相似文献   

17.
In this paper, we consider an imperfect finite beam lying on a nonlinear foundation, whose dimensionless stiffness is reduced from 1 to k as the beam deflection increases. Periodic equilibrium solutions are found analytically and are in good agreement with a numerical resolution, suggesting that localized buckling does not appear for a finite beam. The equilibrium paths may exhibit a limit point whose existence is related to the imperfection size and the stiffness parameter k through an explicit condition. The limit point decreases with the imperfection size while it increases with the stiffness parameter. We show that the decay/growth rate is sensitive to the restoring force model. The analytical results on the limit load may be of particular interest for engineers in structural mechanics.  相似文献   

18.
多孔功能梯度材料(FGM)构件的特性与孔隙率和孔隙分布形式有密切关系。本文基于经典板理论,考虑不同孔隙分布形式时修正的混合率模型,研究Winkler弹性地基上四边受压多孔FGM矩形板的自由振动与临界屈曲载荷特性。首先利用Hamilton原理和物理中面的定义推导Winkler弹性地基上四边受压多孔FGM矩形板自由振动的控制微分方程并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到计算无量纲固有频率和临界屈曲载荷的代数特征方程。将问题退化为孔隙率为零时的FGM矩形板并与已有文献进行对比以验证其有效性。最后计算并分析了梯度指数、孔隙率、地基刚度系数、长宽比、四边受压载荷及边界条件对多孔FGM矩形板无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。  相似文献   

19.
Based on the nonlocal elasticity theory, the vibra-tion behavior of circular double-layered graphene sheets (DLGSs) resting on the Winkler- and Pasternak-type elas-tic foundations in a thermal environment is investigated. The governing equation is derived on the basis of Eringen’s nonlocal elasticity and the classical plate theory (CLPT). The initial thermal loading is assumed to be due to a uniform temperature rise throughout the thickness direc-tion. Using the generalized differential quadrature (GDQ) method and periodic differential operators in radial and cir-cumferential directions, respectively, the governing equation is discretized. DLGSs with clamped and simply-supported boundary conditions are studied and the influence of van der Waals (vdW) interaction forces is taken into account. In the numerical results, the effects of various parameters such as elastic medium coefficients, radius-to-thickness ratio, thermal loading and nonlocal parameter are examined on both in-phase and anti-phase natural frequencies. The results show that the thermal load and elastic foundation respec-tively decreases and increases the fundamental frequencies of DLGSs.  相似文献   

20.
Buckling analysis of the functionally graded viscoelastic circular plates has not been carried out so far. In the present paper, a series solution is developed for buckling analysis of radially graded FG viscoelastic circular plates with variable thickness resting on two-parameter elastic foundations, based on Mindlin's plate theory. The complex modulus approach in combination with the elastic-viscoelastic correspondence principle is employed to obtain the solution for various edge conditions. A comprehensive sensitivity analysis is carried out to evaluate effects of various parameters on the buckling load. Results reveal that the viscoelastic behavior of the materials may postpone the buckling occurrence and the stiffness reduction due to the section variations may be compensated by the graded material properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号