首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated the potential of Raman spectroscopy with excitation in the visible spectral range (VIS Raman) as a tool for the classification of different vegetable oils and the quantification of adulteration of virgin olive oil as an example. For the classification, principal component analysis (PCA) was applied, where 96% of the spectral variation was characterized by the first two components. A significant similarity between sunflower oil and extra‐virgin olive oil was found using this approach. Therefore, sunflower oil is a potential candidate for adulteration in most commercially available olive oils. Beside the classification of the different vegetable oils, we have successfully applied Raman spectroscopy in combination with partial least‐squares (PLS) regression analysis for very fast monitoring of adulteration of extra‐virgin olive oil with sunflower oil. Different mixtures of extra‐virgin olive oil with three different sunflower oil types were prepared between 5 and 100% (v/v) in 5% increments of sunflower oil. While in the present context the adulteration usually refers to the addition of reasonable amounts of the adulterant (given the similarity with the basic product), we show that the technique proposed can also be used for trace analysis of the adulterant. Without using techniques like surface‐enhanced Raman scattering (SERS), a quantitative detection limit down to 500 ppm (0.05%) could be achieved, a limit irrelevant for adulteration in commercial terms but significant for trace analysis. The qualitative detection limit even was at considerably lower concentration values. Based on PCA, a clear discrimination between pure extra‐virgin olive oil and olive oil adulterated with sunflower oil was achieved. The adulterant content was successfully determined using PLS regression with a high correlation coefficient and small root mean‐square error for both prediction and validation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Keeping in view the importance of dietary fats in modulating disease risk, a study was planned to compare edible oils, spreads, and desi ghee based on fatty acid composition through Raman spectroscopy. The double bonds in unsaturated oils tend to react more with oxygen causing oxidative stress in living cells; therefore, the excessive use of processed vegetable oils may pose risk for human health. In the spectral analysis, Raman peaks at 1063 and 1127 cm−1 represent out‐of‐phase and in‐phase aliphatic C C stretch for saturated fatty acids. The peak at 1300 cm−1, labeled for alkane, decreases with increase in the double bond contents (unsaturation). Further, the Raman peak at 1655 cm−1 showed a monotonic increase as a function of unsaturation. The double bond contents in the Raman spectra from 1650–1657 cm−1 represent unsaturated fatty acids that changes during the synthesis of spreads and banaspati ghee. Desi ghee, extracted from cow and buffalo milk, showed distinctive Raman peaks at 1650 and 1655 cm−1, which originates because of isomers of conjugated linoleic acid. These Raman shifts differentiated desi ghee from other artificially produced banaspati ghee, spreads, and oils. Conjugated linoleic acid has proved to be anti‐carcinogenic, anti‐inflammatory, and anti‐allergic properties; therefore, the limited use of desi ghee may reduce the risk of cardiac diseases. Principal component analysis has been applied on the Raman spectra that clearly differentiated desi ghee, mono‐unsaturated extra virgin olive oil, and extra virgin olive oil spread from other oils, oil mixtures, spreads, and ghee. In addition, principal component analysis has been blindly applied successfully on 13 unknown samples to classify them with reference to the known ghee sample. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, virgin olive oil mixed with essential oils from rosemary has been analyzed by means of Raman spectroscopy. First of all, experimental design has been employed in order to define the Raman spectroscopy's parameters, final measuring conditions were: acquisition time of 30 s, five accumulations, and the intensity of the laser power at 75 mW. The Raman spectra were initially measured at full range (150–3000 cm−1), but a narrower window assured faster accumulations and more accurate predictions. The calibration solutions of eucalyptol and camphor in olive oil were prepared following a central composite design and different spectra pre‐processing algorithms were evaluated. To conclude, essential oils obtained by means of Supercritical Fluid Extraction, Ultrasounds, and hydrodistillation were mixed with virgin olive oil and quantified with Raman spectroscopy. Predicted concentrations of the olive oil mixtures were compared with concentrations obtained for the same samples by a Comprehensive Two‐Dimensional Gas Chromatographic (GC × GC) method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The fatty acid composition of vegetable oil plays a significant role in a nutrition‐balanced diet, which makes this industry more quality conscious. A set of store‐purchased vegetable oils and their binary mixtures were characterized by Raman spectra in a region of 800–2000 cm−1. The obtained Raman spectral data were pretreated, and intensities of eight characteristic peaks were extracted as the eigenvalues of an entire spectrum. A prediction model of fatty acid content based on least squares support vector machines (LS‐SVM) were established for multivariate analysis between the Raman spectral eigenvalues and the fatty acid composition measured by gas chromatography (GC) method. The performance of the model was evaluated by comparing the predicted values to the reference values from GC analysis. The correlation coefficient for the prediction of oleic acid, linoleic acid and α‐linolenic acid was 0.9972, 0.9982 and 0.9854, respectively. Raman spectroscopy based on LS‐SVM can be a promising technique for predicting the fatty acid composition of vegetable oil with the advantages of being simple and time‐effective while not requiring any sample preprocessing. In particular, a portable Raman system is suitable for on‐site detection in practical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Edible fats and oils provide a significant contribution in our diet and daily life, as cooking or frying oil, or as components used in food, pharmaceutical, and cosmetics products. Fats and oils are characterized by specific values, including acid value, saponification value, iodine value, and peroxide value, as well as the oxidation products which occur during storage due to oxidative and hydrolytic deterioration. Currently, due to the high price of edible fats and oils, some unethical producers adulterate high-value edible oils like olive oil with low-priced oils like palm and corn oils; therefore the authentication analysis of edible fats and oils must be assured by introducing reliable and fast methods like infrared spectroscopy. Fourier transform infrared (FTIR) spectroscopy is an ideal technique for monitoring the quality control of fats and oils due to its property as a “fingerprint spectra technique,” which allows analysts to differentiate among fats and oils. FTIR spectra signals of fats and oils are very complex. Fortunately, a statistical technique called chemometrics can be used to handle the complex FTIR spectral data. Chemometrics in combination with FTIR spectroscopy has been widely used in many aspects of monitoring quality control of edible fats and oils including their authenticity.  相似文献   

6.
梁瑞生  张坤明 《光学学报》1993,13(5):99-404
介绍喇曼感生克尔效应光谱(RIKES)的琼斯(Jones)矩阵分析方法.探测光束的传输强度不仅由所经过的每一个光学器件的琼斯矩阵所决定,而且还受到强的泵波在非线性介质样品中感生依赖于强度的二向色性和双折射(克尔效应)对琼斯矩阵的影响.同时计及样品和光学器件由强泵波作用下感生应力和其他外部产生的线双折射对喇曼感生克尔效应光谱观察的不利影响,导出测量系统的功率传输函数的完整表达式和喇曼感生克尔效应光谱的实现观察条件,最后简述以甲笨(C_7H_8)液体为试样的喇曼感生克尔效应光谱实验结果分析.  相似文献   

7.
Following the first review on recent advances in linear and nonlinear Raman spectroscopy, the present review summarizes papers mainly published in the Journal of Raman Spectroscopy during 2007. This serves to give a fast overview of recent advances in this research field as well as to provide readers of this journal a quick introduction to the various subfields of Raman spectroscopy. It also reflects the current research interests of the Raman community. Similar reviews of highly active areas of Raman spectroscopy will appear in future issues of this journal. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Raman spectroscopy has advanced considerably in the last several years due to rapid developments in instrumentation and the availability of theoretical methods for accurate calculation of Raman spectra, thus enormously facilitating the interpretation of Raman data. This review is restricted to cover papers mainly published in the Journal of Raman Spectroscopy, which serve to give a fast overview of recent advances in this research field as well as to provide readers of this journal a quick introduction to the various subfields of Raman spectroscopy. It also reflects the current research interests of the Raman community. Similar reviews of highly active areas of Raman spectroscopy will appear in future issues of this journal. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Raman spectroscopic techniques are a group of chemical fingerprint detection methods based on molecular vibrational spectroscopy. They are compatible with aqueous solutions and are time saving, nondestructive, and highly informative. With complementary and alternative medicine (CAM) becoming increasingly popular, more people are consuming natural herbal medicines. Thus, chemical fingerprints of herbal medicines are investigated to determine the content of these products. In this study, I review the different types of Raman spectroscopic techniques used in fingerprinting herbal medicines, including dispersive Raman spectroscopy, resonance Raman spectroscopy, Fourier transform (FT)–Raman spectroscopy, surface-enhanced Raman scattering (SERS) spectroscopy, and confocal/microscopic Raman spectroscopy. Lab-grade Raman spectroscopy instruments help detect the chemical components of herbal medicines effectively and accurately without the need for complicated separation and extraction procedures. In addition, portable Raman spectroscopy instruments could be used to monitor the health and safety compliance of herbal products in the consumer market.  相似文献   

10.
The purpose of the review is to provide a concise overview of recent advances in the broadly defined field of Raman spectroscopy as reflected in part by the many articles published each year in JRS as well as in trends across all related journals publishing in this research area. Context for this review is derived from statistical data on article counts obtained from Thomson Reuters ISI Web of Knowledge by year and by subfield of Raman spectroscopy. Additional information is gleaned from presentations featuring Raman spectroscopy presented at the meetings of the Federation of Analytical Chemistry and Spectroscopy Societies 2011 and the Sixth International Conference on Advanced Vibrational Spectroscopy 2011. Papers published in JRS in 2010, as reviewed here, reflect trends at the cutting edge of Raman spectroscopy, which is expanding rapidly as a sensitive photonic probe of matter at the molecular level with an ever‐widening sphere of novel applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The aim of this paper is to provide an overview of advances in the field of Raman spectroscopy as reflected in articles published each year in the Journal of Raman Spectroscopy as well as in trends across related journals publishing in this research area. The context for this review is derived from statistical data on article counts obtained from Thomson Reuters ISI Web of Knowledge by year and by subfield of Raman spectroscopy. Additional information is gleaned from presentations featuring Raman spectroscopy presented at the International Conference on Advanced Vibrational Spectroscopy in Kobe Japan in August 2013 and at SCIX 2013 sponsored by the Federation of Analytical Chemistry and Spectroscopy Societies in Milwaukee, Wisconsin, USA, October 2013. Papers published in the Journal of Raman Spectroscopy in 2012 are highlighted in this review and reflect topics and advances at the frontier of Raman spectroscopy, a field that is expanding rapidly as a sensitive photonic probe of matter at the molecular level in an ever widening sphere of novel applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The purpose of this review is to provide a concise overview of recent advances in the broadly defined field of Raman spectroscopy as reflected in part by the many articles published each year in Journal of Raman Spectroscopy as well as in trends across all related journals publishing in this research area. Context for this review is derived from statistical data on article counts obtained from Thomson Reuters ISI Web of Knowledge by year and by subfield of Raman spectroscopy. Additional information is gleaned from presentations featuring Raman spectroscopy presented at the XXIII International Conference on Raman Spectroscopy in Bangalore, India, in August 2012 and at Scientific Exchange 2012 sponsored by the Federation of Analytical Chemistry and Spectroscopy Societies in Kansas City, Missouri, USA, October 2012. Papers published in the Journal of Raman Spectroscopy in 2011 are highlighted in this review and reflect trends at the cutting edge of Raman spectroscopy, a field that is expanding rapidly as a sensitive photonic probe of matter at the molecular level with an ever widening sphere of novel applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The purpose of the review is to provide a concise overview of recent advances in the broadly defined field of Raman spectroscopy as reflected in part by the many articles published each year in the Journal of Raman Spectroscopy (JRS) as well as in trends across all related journals publishing in this research area. Context for the review is provided by considering statistical data on citations for the Thompson Reuters ISI Web of Science by year and by subfield of Raman spectroscopy. Additional statistics of number of papers and posters presented by category at the XXII International Conference on Raman Spectroscopy (ICORS 2010) is also provided. Papers published in JRS in 2009, as reviewed here, reflect trends at the cutting edge of Raman spectroscopy which is expanding rapidly as a sensitive photonic probe of matter at the molecular level with an ever widening sphere of novel applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Frank J. Owens 《Molecular physics》2013,111(11):1280-1283
It has been proposed that reduction of exfoliated graphite oxide could be a potential method for producing large quantities of graphene. Raman and surface-enhanced Raman spectroscopy are used to show that oxidation of graphite and exfoliated graphite significantly increases the defect structure of both materials. This would likely lead to a heavily defected graphene structure when oxygen is removed. To insure the observed decomposition is not due to the laser light, the effect of laser intensity on the materials was investigated. It was found that at the highest laser intensity (1.4 × 108 W/M2) there was a significant increase in defects. However, lower laser intensity was found which did not produce defects and was used in the studies of the effect of oxidation on the spectra.  相似文献   

15.
In this paper, we demonstrate the ability of portable Raman spectroscopy and benchtop spatially offset Raman spectroscopy (SORS) techniques to rapidly identify real and fake ivory samples. Both techniques were able to identify exposed genuine from fake ivory samples. In contrast to conventional Raman spectroscopy, SORS was, in addition, able to identify ivory concealed by plastics, paints, varnishes and cloth. Application of the SORS technique allows the interrogation of biomaterial samples through materials in which conventional Raman spectroscopic instrumentation cannot penetrate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Following the first two reviews on recent advances in linear and non‐linear Raman spectroscopy, the present review summarises papers mainly published in the Journal of Raman Spectroscopy during 2008. This again serves to give a brief overview of recent advances in this research field and to provide readers of this journal a quick introduction to the various sub‐fields of Raman spectroscopy. It also reflects the current research interests and trends in the Raman community. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This annual review is published to provide an overview of advances in the field of Raman spectroscopy as reflected in papers published each year in the Journal of Raman Spectroscopy (JRS) as well as in trends across related journals that have published papers in the broad field of Raman spectroscopy. The content is obtained from statistical data on article counts obtained from Thomson Reuters ISI Web of Science Core Collection by year and by subfield of Raman spectroscopy. Additional information is gleaned from presentations at the VIII International Conference on Advanced Vibrational Spectroscopy (ICAVS‐8) in Vienna, Austria in July 2015 and those featuring Raman scattering at SCIX 2015 organized by the Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) in Providence, Rhode Island, USA, in September/October 2015. Coverage is also provided for topics from the conference ECONOS 2015 held in April in Leuven, Belgium. Finally, papers published in JRS in 2014 are highlighted and arranged by topics at the frontier of Raman spectroscopy. Taken from these various viewpoints, it is clear that Raman spectroscopy continues to be a rapidly expanding field that provides sensitive photonic information of matter at the molecular level in an ever‐widening arena of novel applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Commercially available extra virgin olive oils are often adulterated with some other cheaper edible oils with similar chemical compositions. A set of extra virgin olive oil samples adulterated with soybean oil, corn oil and sunflower seed oil were characterized by Raman spectra in the region 1000–1800 cm−1. Based on the intensity of the Raman spectra with vibrational bands normalized by the band at 1441 cm−1 (CH2), external standard method (ESM) was employed for the quantitative analysis, which was compared with the results achieved by support vector machine (SVM) methods. By plotting the adulterant content of extra virgin olive oil versus its corresponding band intensity in the Raman spectrum at 1265 cm−1, the calibration curve was obtained. Coefficient of determination (R2) of each curve was 0.9956, 0.9915 and 0.9905 for extra virgin olive oil samples adulterated with soybean oil, corn oil and sunflower seed oil, respectively. The mean absolute relative errors were calculated as 7.41, 7.78 and 9.45%, respectively, with ESM, while they were 5.10, 6.96 and 4.55, in the SVM model, respectively. The prediction accuracy shows that the ESM based on Raman spectroscopy is a promising technique for the authentication of extra virgin olive oil. The method also has the advantages of simplicity, time savings and non‐requirement of sample preprocessing; especially, a portable Raman system is suitable for on‐site testing and quality control in field applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper made a qualitative identification of ordinary vegetable oil and waste cooking oil based on Raman spectroscopy. Raman spectra of 73 samples of four varieties oil were acquired through the portable Raman spectrometer. Then, a partial least squares discriminant analysis (PLS‐DA) model and a discrimination model based on characteristic wave band ratio were established. A classification variable model of olive oil, peanut oil, corn oil and waste cooking oil that was established through the PLS‐DA model could identify waste cooking oil accurately from vegetable oils. The identification model established based on selection of waveband characteristics and intensity ratio of different Raman spectrum characteristic peaks could distinguish vegetable oils from waste cooking oil accurately. Research results demonstrated that both ratio method and PLS‐DA could identify waste cooking oil samples accurately. The identification model based on characteristic waveband ratio is simpler than PLS‐DA model. It is widely applicable to identification of waste cooking oil. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Designing a structure having high local field enhancement, wideband resonance, and large hot spot area is the key element to obtain a large enhancement factor for surface-enhanced Raman spectroscopy applications. Here, the concentric toroid structures in dimer configuration is proposed, which shows a large local field intensity in a wide spectral range and the region that leads to a high-surface-enhanced Raman scattering signal intensity. Calculations show that the average surface-enhanced Raman scattering enhancement is up to 60 times more compared to the conventional dimer toroid structures with similar size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号