首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Orthogonal acceleration is a method for gating ions from an ion beam into a time-of-flight (TOF) mass spectrometer. The technique involves a pulsed electric field to apply acceleration directed orthogonally to an ion beam. This approach is useful for coupling continuous ion sources to TOF mass analyzers. Most instruments of this type, which have been described in the literature, use steering electrodes after the orthogonal acceleration step. Those velocity components of ions originating from the ion beam velocity are minimized so that the deflected drift-trajectory is parallel to a transverse flight tube. In an alternative geometry the ion beam velocity is conserved and the drift-trajectory after the orthogonal acceleration step is spontaneous. The differences between the space-time focusing ability with spontaneous and deflected drift-trajectories are discussed and investigated. Trajectory calculations indicate that deflection fields placed after the orthogonal acceleration step distort the ion packet because, in this geometry, the flight-time to the detector is dependent on the position that the ions enter the steering optics. Increasing the duty-cycle efficiency by sampling longer sections of the continuous ion beam leads to a degradation of resolving power. Employing a spontaneous drift-trajectory after orthogonal acceleration provides the advantage that the arrival time spread for isobaric ions is, in principle, independent of the length of the ion beam sampled. The major implication of these findings is that simultaneously optimized sensitivity and resolving power may not be achievable with the deflected drift-trajectory instruments. The calculations are in agreement with results from the published data of a number of groups who have built instruments based on the orthogonal acceleration principle.  相似文献   

2.
This work shows the analytical potential of inductively coupled plasma orthogonal-acceleration time-of-flight mass spectrometry (ICP-OA-TOF-MS) for rapid, simultaneous, and reliable determination of more than 50 elements at ultra-trace levels in urine. Under optimum instrumental conditions, after a 10-fold sample dilution step, and by using Rh as an internal standard, ICP-OA-TOF-MS also enables the determination of elements whose assay is more diffcult when using conventional quadrupole instruments. This is confirmed by the analysis of commercially available reference urine samples and/or by analytical recoveries study and isotope ratio based determination of accuracies. On the other side, the interference resulting from polyatomic carbon, chlorine, or various sulfur species does not allow the determination of elements such as Cr, Fe, V, Se and As without a mathematical correction.
Figure
Part of the ICP-TOF-MS mass spectra recorded from SeronormTM Trace Elements Urine Lot 0511545 diluted in 1+9 ratio with water  相似文献   

3.
The ion detection process in a discrete-dynode electron multiplier can result in significant mass resolution losses in time-of-flight mass spectrometry (TOF-MS) for higher mass-to-charge (m/z) ion species. This resolution loss is attributed to propagation time delays and signal broadening in the ion detector. This is presumed to be due to the generation of a distribution of secondary ion species produced initially upon impact of a primary ion with the first dynode surface of the ion detector. Comparisons are made between the signals produced by a standard discrete dynode ion detector (which amplifies the negatively charged species produced by impact of a primary ion) and a detector modified to respond to only the positively charged secondary ion species produced by a primary ion impact. Ion signals for higher m/z ions with the standard detector geometry are seen to be due to a narrow signal component, most likely due to the generation of secondary electrons and/or very low mass secondary ions (H-), and a broad signal component, apparently due to secondary ions which take significant amounts of time to traverse the low potential fields between the first and second detector dynode. This results in ion signal tailing for higher m/z ion species. Numerical subtraction of the ion signal obtained with the standard and modified detector geometries (singly protonated molecular ion species of equine myoglobin) results in an improvement in mass resolution, such that a new adduct ion species (from trifluoroacetic acid) can be resolved.  相似文献   

4.
5.
The use of orthogonal acceleration quadrupole time-of-flight (Q-TOF) mass spectrometry to determine the collisionally activated dissociation (CAD) of a test compound 1-(3-[5-[1,2,4-triazol-4-yl]-1H-indol-3-yl]propyl)-4-(2-[3-fluorophenyl]ethyl)piperazine is described. At unit-mass resolution the identity of many ions is ambiguous because of the complexity of the resulting product ion spectrum. Using the high resolution capabilities of the Q-TOF instrument, exact masses for each fragment were determined. These data were used to infer molecular formulas for each fragment through software interpretation and, by further applying chemical intuition, the majority of ions were fully assigned. Additionally, by utilizing in-source fragmentation at high cone voltage, analyses of second-generation products allowed derivation of a consistent sequential fragmentation pathway. This study clearly demonstrates the power of Q-TOF mass spectrometry to elucidate complex product ion spectra.  相似文献   

6.
7.
Yeast and yeast cultures are frequently used as additives in diets of dairy cows. Beneficial effects from the inclusion of yeast culture in diets for dairy mammals have been reported, and the aim of this study was to develop a comprehensive analytical method for the accurate mass identification of the ‘global’ metabolites in order to differentiate a variety of yeasts at varying growth stages (Diamond V XP, Yea-Sacc and Levucell). Microwave-assisted derivatization for metabolic profiling is demonstrated through the analysis of differing yeast samples developed for cattle feed, which include a wide range of metabolites of interest covering a large range of compound classes. Accurate identification of the components was undertaken using GC-oa-ToFMS (gas chromatography-orthogonal acceleration-time-of-flight mass spectrometry), followed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) for data reduction and biomarker discovery. Semi-quantification (fold changes in relative peak areas) was reported for metabolites identified as possible discriminative biomarkers (p-value <0.05, fold change >2), including d-ribose (four fold decrease), myo-inositol (five fold increase), l-phenylalanine (three fold increase), glucopyranoside (two fold increase), fructose (three fold increase) and threitol (three fold increase) respectively.  相似文献   

8.
Accuracy of mass measurements performed in orthogonal acceleration time-of-flight (oa-TOF) mass spectrometers highly depends on the quality of the signal and the internal calibration. The use of two reference compounds which bracket the targeted unknown, give rise to ions with sufficient signal-to-noise ratio while avoiding detector saturation and produce signals of similar intensity as compared to the target is a common requirement which allow a 5 ppm accuracy on a routine basis. Ion charge state is demonstrated here to be an additional and particularly critical parameter. Using internal references of lower charge state than the target ion systematically yielded overestimated data. Errors measured for quadruply charged molecules were in the range 16-18 ppm when mass calibrants were singly charged ions while accuracy was below 5 ppm when references and target ions were in the same charge state. Magnitude of errors was found to increase with the difference in charge state. This phenomenon arises from the orthogonal acceleration of ions in the TOF analyzer, an interface implemented in all TOF mass spectrometers to accommodate continuous beam ionization sources. Copyright (c) 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The application of sulphur-specific detection via ultra-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (UPLC/ICPMS) to detect and quantify the glutathione (GSH)-adducts produced via the in vitro formation of reactive metabolites is demonstrated. The adducts were formed in human liver microsomes supplemented with unlabelled GSH for clozapine. The calculation of adduct concentration was performed via comparison of the peak areas to calibration curves constructed from omeprazole, a sulphur-containing compound over the range of 0.156 to 15.62 μM of sulphur with a detection limit of 1.02 ng of sulphur on-column. Identification of the adducts was performed using conventional UPLC/time-of-flight (TOF)-MS with the calculation of clozapine intrinsic clearance carried out by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). The use of ICPMS in this way appears to offer a novel, rapid and sensitive means of determining the quantity of GSH conjugates with the combined adducts producing 0.9 μM of reactive metabolite out of a total of 3.5 μM of metabolites. The GSH adduct therefore represents 26% of this total produced as a result of the metabolism of drug to reactive species.  相似文献   

10.
Bradykinin is a small peptide that acts mainly as a hormone by activating specific receptors that confer protection against the development of hypertension. The efficacy of bradykinin is influenced by the activities of various kininases present in plasma and blood. In this study, both human and rat plasma were incubated with a labelled form of bradykinin (at 4 and 12.5 microM), that will be referred to as bromobradykinin. The metabolic fate of bromobradykinin was monitored by liquid chromatography coupled to an orthogonal acceleration time-of-flight mass spectrometer (oaTOF). Quantification measurements of the bromine-containing metabolites were performed on-line, via flow splitting, by inductively coupled plasma mass spectrometry (ICPMS). The data obtained highlighted that the mechanism(s) of bradykinin metabolism in human and rat plasma are different, with the metabolism of bradykinin in rat plasma being much more aggressive than that observed in human plasma. In addition to the known bradykinin metabolites, e.g. [1,5], [1,7] from ACE, [1,8] from carboxypeptidase and [2,9] from aminopeptidase activity, we have identified the presence of new bradykinin metabolites in both human and rat plasma. These have been identified as fragment [5], the amino acid phenylalanine, which was present in both the human and rat plasma and the fragments [2,8] and [4,8] in rat plasma. To our knowledge it is the first time that these fragments have been recorded in human and rat plasma. The occurrence of these new fragments provides evidence for the presence of potentially new enzymes and mechanisms of bradykinin metabolism. The method described here provides a powerful technique for monitoring the activity of the many kininases involved in bradykinin metabolism such as ACE (angiotensin I converting enzyme), carboxypeptidase N and aminopeptidase P. In addition, this procedure could be used as a screening assay for selecting and monitoring the actions of inhibitors of the enzymes implicated in bradykinin metabolism directly in plasma or serum.  相似文献   

11.
Time-of-flight mass spectrometry (ToF-MS) has gained wide acceptance in many fields of chemistry, proteomics, metabolomics and small molecule analysis. ToF-MS, however, has some inherent advantages and drawbacks. Numerous developments have been made to hybrid ToF instruments to improve their capabilities. We have used a quadrupole orthogonal acceleration ToF (Q-oa-ToF) instrument to assess developments made to improve resolution, dynamic range and signal-to-noise (S/N) ratios (i.e. sensitivity). Higher mass resolution can improve the analysis of mixtures containing compounds with similar m/z values and improved mass accuracy gives greater confidence for structural elucidation applications. Wide dynamic ranges are necessary for the analysis of unknown samples or samples that vary widely in analyte concentrations. The performance of the advanced functionalities for routine structural elucidation in terms of resolution, dynamic range and S/N ratios was investigated using test compounds. The results presented in this work demonstrate and validate the use of these new enhancements for Q-ToF instruments and also show their limitations.  相似文献   

12.
Wanying Y  Hua Z  Weidong H  Jiping C  Xinmiao L 《Talanta》2005,65(1):172-178
The confirmation and identification of the impurities in metolachlor (a herbicde) by using gas chromatography-orthogonal acceleration time of flight mass spectrometry (GC-oaTOFMS) and gas chromatography-quadrupole mass spectrometry (GC-qMS) are described. For the accurate mass measurement can be carried by GC-oaTOFMS, the elemental compositions of molecular and fragment ions in the spectra are suggested. In the experiment the average of mass deviations between the measured and theoretical values was below 2.5 mDa. Finally ten impurities were confirmed and identified. They accounted for 94% of the total impurities by weight.  相似文献   

13.
The oxidation catalysts (VO2)P207 and β-VOPO4 are studied by laser desorption time-of flight mass spectrometry. Mass spectra of both positive and negative ions are reported for these compounds. Individual scans are tested for ion association, that is, the consistent appearance of a given pair of ions in many scans. The structurally simpler ?-VOPO4 shows fewer associations than either (VO)2P207 or an 18O-substituted analogue of β-VOPO4 even though the overall spectra from the three compounds do not differ greatly. These results indicate that the associations observed between ions may be sensitive to small differences in structure in the original specimen. Thus, the identification of ion association may provide information to supplement the mass spectrum of the sample.  相似文献   

14.
A method to control the duty cycle of a time-of-flight mass spectrometer is described. The method relies on one or more ion gates placed in the beam path that have the function to transmit or stop the beam. These ion gates can switch from the open state to the closed state in tens of nanoseconds and effectively select portions of the mass range. The method is useful in circumstances where recording the complete mass spectrum is not an essential requirement, for example, in the analysis of known compounds where sensitivity and speed of operation are more important. It will be of benefit for applications in separation sciences with techniques involving fast chromatographic separations, where hundreds of mass spectra may be required per second. In such circumstances analytical identification may require only a limited number of masses (or mass regions) to be continuously monitored. Improvement of the duty cycle is particularly important for orthogonal-acceleration time-of-flight (oa-TOF) mass spectrometry instruments whose performance suffers from a low duty cycle. The duty cycle is not a constant for an instrument design but is a mass-dependent function and is least for smaller masses. The method described here is capable of raising the duty cycle to 100%. A theory is developed for one or more ion gate arrangements, for both linear- and reflectron-TOF systems. For a two-gate system the relationship between the positions of the first and second gates is described by a '2/3 rule'. Experimental results are shown for one-gate and two-gate operation, both in linear and in reflectron modes of operation, on an oa-TOF system built in-house.  相似文献   

15.
The ion kinetic energy of a helium microwave plasma is studied using an orthogonal acceleration time-of-flight mass spectrometer. The ions produced in the plasma are extracted into the mass spectrometer in an 'off-cone' mode (i.e. the helium plasma plume is off the sampler cone), and enter the repelling zone in the x-direction, which is perpendicular to the flight tube. The information of ion initial kinetic energy was obtained from both theoretical calculations and experimental results. The potential influence of two x-direction steering plates (X-steering plates) on the ion energy and signal intensity was examined. The influence of gas composition on the ion kinetic energy was also investigated. The calculated results show that ions with different m/z have different velocity and kinetic energy when they enter the ion modulation zone, and lighter ions have higher velocity and lower kinetic energy. The experimental results obtained demonstrate that the ion signals of different m/z produced with an 'off-cone' sampling helium microwave plasma show similar trends as calculated with the potential difference of the X-steering plates, revealing their narrow kinetic energy distribution in the x-direction. Under typical operating conditions, the x-direction kinetic energy of ions detected mostly range from about 14.9 eV for (7)Li(+) to 16.8 eV for (208)Pb(+).  相似文献   

16.
We report the application of high-performance liquid chromatography (HPLC) linked to inductively coupled plasma mass spectrometry (ICPMS) and orthogonal acceleration time-of-flight mass spectrometry (oa-TOFMS) for the identification of phase I and II urinary metabolites of diclofenac. The metabolites were separated by reversed-phase HPLC monitored with a UV diode array detector (UV-DAD) after which 90% of the eluent was directed to an ICPMS source, with the remainder going to an oa-TOF mass spectrometer. Compounds containing (35)Cl, (37)Cl and (32)S were detected specifically using ICPMS and identified by oa-TOFMS. The metabolites detected and identified in this way included glucuronic acid and sulfate conjugates, mono- and dihydroxylated and free diclofenac. In addition a previously unreported in vivo metabolite, an N-acetylcysteinyl conjugate of diclofenac, was also characterised. This is the first application of the combination of HPLC/UV-DAD/ICPMS/oa-TOFMS for the investigation of the metabolic fate of chlorinated xenobiotics by direct biofluid analysis.  相似文献   

17.
This paper describes the investigation of the potential of a quadrupole orthogonal acceleration time-of-flight mass spectrometer (Q-TOF) equipped with an atmospheric pressure ionisation interface for quantitative measurements of small molecules separated by reversed phase liquid chromatography. To this end, the detection limits and linear dynamic range in particular were studied in an LC/MS/MS experiment using 3,4-methylenedioxymethamphetamine standards and 3,4-methylenedioxyethylamphetamine for internal standardisation. In a second phase, the experiment was repeated with real biological extracts (whole blood, serum, and vitreous humour). A calibration for 3,4-methylenedioxymethamphetamine and its metabolite 3,4-methylenedioxyamphetamine was prepared in each of these matrices again using 3,4-methylenedioxyethylamphetamine as internal standard. The resulting quantitative data were compared with those obtained by liquid chromatography with fluorescence detection for the same extracts. The Q-TOF results revealed excellent sensitivity and a linear dynamic range of nearly four decades (2-10 000 pg on-column, r(2) = 0.9998, 1/x weighting). Furthermore, all the calibration curves prepared in biological material were superimposable, LC/MS/MS and LC-fluorescence, and the quantitative results for actual samples compared very favourably. It was concluded that the Q-TOF achieves a linear dynamic range for quantitative LC/MS/MS work exceeding that of fluorescence detection and at much better absolute sensitivity. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

18.
邹瑶  姜武辉  邹丽娟  李秀玲  梁鑫淼 《色谱》2013,31(4):367-371
目前磷酸化蛋白质组学研究中的主要技术是蛋白质酶解产生的磷酸化肽的质谱检测。但是实际样品中的磷酸化肽(特别是多磷酸化肽)很难被检测到。其原因普遍认为是由于质谱检测时,非磷酸化肽抑制磷酸化肽。但也有认为非磷酸化肽对磷酸化肽没有抑制作用。另外磷酸化肽之间是否存在离子抑制作用还没有报道。本文采用相同氨基酸序列的标准磷酸化肽和非磷酸化肽,将其单独和混合进行质谱检测,通过对比混合前后磷酸化肽的信号强度,证明了非磷酸化肽对磷酸化肽有离子抑制作用;单磷酸化肽对二磷酸化肽有一定的抑制作用,但不太显著;单磷酸化肽对三磷酸化肽、二磷酸化肽对三磷酸化肽均有显著的离子抑制作用。该研究为今后单磷酸化肽和多磷酸化肽的分段富集和检测提供了有力的证明。  相似文献   

19.
20.
N-Linked oligosaccharide mixtures released from a number of standard glycoproteins were derivatised with 3-acetylamino-6-acetylaminoacridine (AA-Ac) using reductive amination. Analysis of these mixtures using an experimental matrix-assisted laser desorption/ionisation (MALDI) hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer provided detailed information about the mass distribution of the glycan derivatives. Collision-induced dissociation of the singly protonated [M + H](+) ions also gave rise to a number of product ions produced by the sequential cleavage of the glycosidic linkages. As fragmentation of the positively charged species occurred predominantly in one direction, i.e., from the non-reducing end of the glycan to the AA-Ac moiety, a considerable amount of information could be obtained with ease about the sequence in which the sugar residues were attached to one another. This derivatisation procedure and mass spectrometric methodology were applied successfully to neutral and acidic glycans released from proteins separated by gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号