首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We apply the energy-momentum tensor to calculate energy, momentum and angular-momentum of two different tetrad fields. This tensor is coordinate independent of the gravitational field established in the Hamiltonian structure of the teleparallel equivalent of general relativity (TEGR). The spacetime of these tetrad fields is the charged dilaton. Our results show that the energy associated with one of these tetrad fields is consistent, while the other one does not show this consistency. Therefore, we use the regularized expression of the gravitational energy-momentum tensor of the TEGR. We investigate the energy within the external event horizon using the definition of the gravitational energy-momentum. PACS 04.70.Bw; 04.50.+h; 04.20.-Jb  相似文献   

2.
The Newman-Penrose method is used to study the class of gravitational fields in a vacuum which permit a normal congruence of isotropic geodesies. The energy-momentum tensor is used in tetrad form to prove that if the nondegeneratemetric of these fields depends only on a single isotropic coordinate, the solutions will describe plane gravitational waves.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika, Vol. 12, No. 4, pp. 20–23, April, 1969.  相似文献   

3.
The solutions of Møller's tetrad equations are found for the three types of exact gravitational waves, for which Møller's energy-momentum complex gives vanishing densities of gravitational energy and energy current.  相似文献   

4.
Using a non-linear version of electrodynamics coupled to the teleparallel equivalent of general relativity (TEGR), we obtain new regular exact solutions. The non-linear theory reduces to the Maxwell one in the weak limit with the tetrad fields corresponding to a charged space-time. We then apply the energy-momentum tensor of the gravitational field, established in the Hamiltonian structure of the TEGR, to the solutions obtained.  相似文献   

5.
Interrelations of the intrinsic momentum (spin), rotation of material distributions, and intrinsic momentum of the gravitational field are investigated in the context of the general relativistic theory of gravitation involving the general relativity theory (GRT) and the Einstein-Cartan theory. It is demonstrated that the spin density vector of the gravitational field s g i is equal to the rotor of the tetrad reference point ωiiklm e k (a) e(a)l,m/2 to within the factor 1/κ (s g i =ω/κc). It is demonstrated that the vector s g i is proportional to the spin density vector of the gravitating field si (ω)=jc(Ψγiγ5Ψ)/2 as well as the pseudovector of space-time torsion Qi in the Einstein-Cartan theory, which in both cases induces a cubic nonlinearity of the spinor field. An expression for the energy-momentum density tensor of the eddy gravitational field is derived. It is also demonstrated that the free eddy gravitational field with polarized spin can form “mole holes.” An ideal fast-rotating self-gravitating fluid can cause a similar effect. The corresponding exact solutions of joint systems of the Einstein and rotating ideal fluid equations are presented. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 57–60, October, 2007.  相似文献   

6.
It is shown that a correct determination of the sources of the tetrad gravitational field as the total energy-momentum tensor of the nongravitational matter in an appropriate space of absolute parallelism requires elimination of the additional Pellegrini—Plebanski terms.  相似文献   

7.
Expressions for a new canonical energy-momentum tensor and an internal angular momentum of the gravitational field are derived in the context of bimetric relativistic gravitation theory based on the variational principle. A system of relations for the determining parameters of the gravitational field and matter involving, in particular, the continuity condition for the energy-momentum flux density is formulated on the discontinuity surface. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 52–58, April, 2006.  相似文献   

8.
Based on a general variational principle, Einstein-Hilbert action and sound facts from geometry, it is shown that the long existing pseudotensor, non-localizability problem of gravitational energy-momentum is a result of mistaking different geometrical, physical objects as one and the same. It is also pointed out that in a curved spacetime, the sum vector of matter energy-momentum over a finite hyper-surface can not be defined. In curvilinear coordinate systems conservation of matter energy-momentum is not the continuity equations for its components. Conservation of matter energy-momentum is the vanishing of the covariant divergence of its density-flux tensor field. Introducing gravitational energy-momentum to save the law of conservation of energy-momentum is unnecessary and improper. After reasonably defining “change of a particle’s energy-momentum”, we show that gravitational field does not exchange energy-momentum with particles. And it does not exchange energy-momentum with matter fields either. Therefore, the gravitational field does not carry energy-momentum, it is not a force field and gravity is not a natural force.  相似文献   

9.
In this paper, we consider both Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation) analogs of the energy-momentum definition of Møller in order to explicitly evaluate the energy distribution (due to matter and fields including gravity) associated with a general black hole model which includes several well-known black holes. To calculate the special cases of energy distribution, here we consider eight different types of black hole models such as anti-de Sitter Cmetric with spherical topology, charged regular black hole, conformal scalar dyon black hole, dyadosphere of a charged black hole, regular black hole, charged topological black hole, charged massless black hole with a scalar field, and the Schwarzschild-de Sitter space-time. Our teleparallel gravitational result is also independent of the teleparallel dimensionless coupling constant, which means that it is valid not only in teleparallel equivalent of general relativity but also in any teleparallel model. This paper also sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime and (b) the viewpoint of Lessner that the Møller energy-momentum complex is the powerful concept to calculate energy distribution in a given space-time.  相似文献   

10.
A covariant method is devised to construct the symmetric energy-momentum tensor for vector fields in an orthogonal frame of reference. The method is then used to construct the symmetric energy-momentum tensor for spinor fields. Kazan’ University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 27–30, March, 1997.  相似文献   

11.
A theory of gravitational interaction in classical electrodynamics is developed on the basis of an earlier-proposed minimal relativistic model of gravitation. From the variation principle, a system of gaugeinvariant equations of the interacting electromagnetic and gravitational fields is deduced and their common energy-momentum tensor is constructed. A rigorous solution to the problem of regularizing the field mass of a point charge is given with consideration for the coupling energy of the gravitational interaction. The propagation of electromagnetic waves in the gravitational field is discussed. It is shown that, under the condition of the existing resonant ratio 2: 3 for the periods of Mercury’s orbital revolution and daily rotation, tidal forces cause a regular shift in the planet’s perihelion in an observable forward direction.  相似文献   

12.
The problem of gravitational radiation is discussed with the help of the Rodichev energy-momentum tensor. An invariant criterion is formulated for finding radiation in a space without sources. In general, the question of the presence of radiation in a system is resolved by a local study of the behavior of the energy-momentum tensor in the comoving tetrad. The results are applied to the study of certain exact solutions of the Einstein equations.  相似文献   

13.
An exact charged solution with axial symmetry is obtained in the teleparallel equivalent of general relativity. The associated metric has the structure function G(ξ)=1-ξ2-2mAξ3-q2A2ξ4. The fourth order nature of the structure function can make calculations cumbersome. Using a coordinate transformation we get a tetrad whose metric has the structure function in a factorizable form (1-ξ2)(1+r+Aξ)(1+r-Aξ) with r± as the horizons of Reissner–Nordström space-time. This new form has the advantage that its roots are now trivial to write down. Then, we study the singularities of this space-time. Using another coordinate transformation, we obtain a tetrad field. Its associated metric yields the Reissner–Nordström black hole. In calculating the energy content of this tetrad field using the gravitational energy-momentum, we find that the resulting form depends on the radial coordinate! Using the regularized expression of the gravitational energy-momentum in the teleparallel equivalent of general relativity we get a consistent value for the energy.  相似文献   

14.
A general definition of the spin moment is presented in the tetrad formulation of the relativistic theory of gravitation; it is based on the conditions for the invariance of the corresponding action integral relative to infinitesimal tetrad transformations (the so-called tetrad spin moment) and infinitesimal coordinate transformations (the so-called coordinate spin moment). It is shown that the tetrad formulation of the general theory of relativity (TFGTR) and the tetrad theory of gravitation (TTG) in a space of absolute parallelism lead to fundamentally different definitions of spin, since in the Riemannian geometry of the TFGTR only the coordinate spin moment is physically meaningful, whereas in the space of absolute parallelism of the TTG only the tetrad spin moment has essential significance. It is also indicated that the Pellegrini-Plebanski theory (PPT) leads to an unsatisfactory hybrid definition of spin in the form of the coordinate spin moment of the gravitational and boson fields and the tetrad spin moment of the gravitational and fermion fields, the gravitational field entering into these spin moments of the PPT with opposite signs.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 68–71, May, 1976.  相似文献   

15.
We analyze in this paper the general covariant energy-momentum tensor of the gravitational system in general five-dimensional cosmological brane-world models. Then through calculating this energy-momentum for the cosmological generalization of the Randall-Sundrum model, which includes the original RS model as the static limit, we are able to show that the weakness of the gravitation on the “visible” brane is a general feature of this model. This is the origin of the gauge hierarchy from a gravitational point of view. Our results are also consistent with the fact that a gravitational system has vanishing total energy.  相似文献   

16.
The fundamental symmetry of Einstein’s theory of gravity is Lorentz-invariance which leads to a well defined energy-momentum tensor. This is also true for Maxwell’s theory of electromagnetism which has an additional symmetry due to its spin one, restmass zero character. Similarly, the spin two, restmass zero character of the gravitational field leads to an additional gauge symmetry that happens to be isomorphic to the concept of general covariance. The gauge-covariant energy-momentum tensor for gravitational interactions vanishes identically.  相似文献   

17.
The action which describes the interaction of gravitational and electron fields is expressed in canonical form. In addition to general covariance, it exhibits the local Lorentz invariance associated with four-dimensional rotations of the local orthonormal frames. The corresponding Hamiltonian constraints are derived and their (Dirac) bracket relations given. The derivative coupling of the gravitational tetrad and spinor fields is not present in the Hamiltonian, but rather in the unusual bracket relations of the field variables in the theory. If the timelike leg of the tetrad field is fixed to be normal to the xo = constant hyper-surfaces (“time gauge”) the derivative coupling drops from the theory in the sense that the relation between the gravitational velocities and momenta is the same as when the spinor fields are absent.  相似文献   

18.
A gravitational field can be seen as the anholonomy of the tetrad fields. This is more explicit in the teleparallel approach, in which the gravitational field-strength is the torsion of the ensuing Weitzenböck connection. In a tetrad frame, that torsion is just the anholonomy of that frame. The infinitely many tetrad fields taking the Lorentz metric into a given Riemannian metric differ by point-dependent Lorentz transformations. Inertial frames constitute a smaller infinity of them, differing by fixed-point Lorentz transformations. Holonomic tetrads take the Lorentz metric into itself, and correspond to Minkowski flat spacetime. An accelerated frame is necessarily anholonomic and sees the electromagnetic field strength with an additional term.  相似文献   

19.
In the context of a gauge theory for the translation group, a conserved energy-momentum gauge current for the gravitational field is obtained. It is a true spacetime and gauge tensor, and transforms covariantly under global Lorentz transformations. By rewriting the gauge gravitational field equation in a purely spacetime form, it becomes the teleparallel equivalent of Einstein's equation, and the gauge current reduces to the Moller's canonical energy-momentum density of the gravitational field.  相似文献   

20.
The method of a tetrad field proposed by Rayski was used to determine the energy-momentum tensor for an approximate solution of the Einstein equations in the static case, from which it follows that the static gravitational field has non-zero mass but zero momentum, as was to be expected.In conclusion the author thanks P. Burcev for fruitful discussions and great interest in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号