首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report experimental evidence for a transition in the interface coupling between an antiferromagnetic film and a ferromagnetic substrate. The transition is observed in a thin epitaxial NiO film grown on top of Fe(001) as the film thickness is increased. Photoemission electron microscopy excited with linearly polarized x rays shows that the NiO film is antiferromagnetic at room temperature with in-plane uniaxial magnetic anisotropy. The anisotropy axis is perpendicular to the Fe substrate magnetization when the NiO thickness is less than about 15 A, but rapidly becomes parallel to the Fe magnetization for a NiO coverage higher than 25 A.  相似文献   

2.
The effective interlayer coupling between antiferromagnetically coupled hard and soft ferromagnetic thin films is investigated as a function of the magnetic bit length in the hard layer, which is controlled using a magnetic recording system. The interlayer coupling is explored by studying the magnetization reversal of the soft layer. As the bit length decreases, the coupling evolves from antiferromagnetic to biquadratic to uncoupled. These results are reproduced using a micromagnetic model and determine the applicability range of Slonczewski's fluctuation model of biquadratic coupling.  相似文献   

3.
A comprehensive study of the influence of ferromagnetic thickness on the static and dynamic magnetic properties in exchange-biased FeCo/MnIr multilayers for both strong and weak exchange-bias coupling cases is presented. The results demonstrate that static and dynamic magnetic anisotropy fields decrease with ferromagnetic thickness in both cases. The rising of rotational anisotropy is discussed in conjunction with the enhanced coercivity and exchange bias by taking into account the roles of the rotatable and frozen antiferromagnetic spins in each of the two cases. Due to the contributions of the exchange bias and rotational anisotropy, the resonance frequency can be tailored up to 10 GHz. In addition, the behaviors of the frequency linewidth and the effective damping factor are discussed and ascribed to the dispersion of magnetic anisotropy.  相似文献   

4.
A study of the local magnon mode in FeF2 crystals with Mn2+ impurities by inelastic Raman light scattering is presented. Though the interaction between the radiation and the Mn spins is negligible the scattering by the s0 local mode is very strong. The data of the frequency and the scattering intensity are analyzed in terms of a magnetization coupled mode approach.  相似文献   

5.
A positive domain-wall resistance at low temperatures has been reported in the literature for cobalt films with a perpendicular magnetic easy axis, in contrast to the behavior observed in microstructures made from cobalt, iron, and permalloy films with an in-plane easy axis and to that seen in perpendicular iron–palladium thin-film compounds. This phenomenon is unexpected if only domain-wall or Fermi-surface properties are considered. It can, however, be understood if an existing domain-wall resistance is considered which is compensated by a magnetoresistance effect arising from surface scattering in a thin film with closure domains. A theory that properly accounts for this interplay between domain-wall resistance and surface scattering is presented and employed to analyze existing experimental data. PACS 75.60.Ch; 75.70.Ak; 75.70.Pa  相似文献   

6.
The element- and site-specificity of X-ray resonant magnetic scattering (XRMS) makes it an ideal tool for furthering our understanding of complex magnetic systems. In the hard X-rays, XRMS is readily applied to most antiferromagnets where the relatively weak resonant magnetic scattering (10−2–10−6 I c ) is separated in reciprocal space from the stronger, Bragg charge scattered intensity, I c . In ferro(ferri)magnetic materials, however, such separation does not occur and measurements of resonant magnetic scattering in the presence of strong charge scattering are quite challenging. We discuss the use of charge-magnetic interference resonant scattering for studies of ferromagnetic (FM) crystals and layered films. We review the challenges and opportunities afforded by this approach, particularly when using circularly polarized X-rays. We illustrate current capabilities at the Advanced Photon Source with studies aimed at probing site-specific magnetism in ferromagnetic crystals, and interfacial magnetism in films.  相似文献   

7.
The temperature dependencies of the ferromagnetic resonance (FMR) linewidth and the resonance field-shift have been investigated for NiO/NiFe exchange-biased bilayers from 78 K to 450 K. A broad maximum in the linewidth of 500 Oe, solely due to the exchange-bias, is observed at ≈150 K when the magnetic field is applied along the film plane. When the magnetic field is applied perpendicular to the film plane, the maximum in the linewidth is less pronounced and amounts to 100 Oe at the same temperature. Such a behavior of the FMR linewidth is accompanied with a monotonic increase in the negative resonance field-shift with decreasing temperature. Our results are compared with the previous experimental FMR and Brillouin light scattering data for various ferromagnetic/antiferromagnetic (FM/AF) structures, and suggest that spin dynamics (spin-wave damping and anomalous resonance field-shift) in the FM/AF structures can be described in a consistent way by a single mechanism of the so-called slow-relaxation.  相似文献   

8.
We have measured time-of-flight (TOF) distributions of Br atoms desorbed from thin (less than 1000 Å) epitaxial films of KBr on (100) InSb with a 2 keV electron beam. Although the general structure of the TOF spectra was similar to that obtained previously for the thick crystals, both the fast and the slow (thermal) components of the distribution were strongly dependent on the film thickness. We argue that this dependence is due to two different diffusion processes involved in the transport of the primary excitation products from the bulk to the surface. By measuring the velocity resolved ESD yield for films of various thicknesses, we determined that a diffusion length of the carriers responsible for the thermal ESD component varied from 30 to 700 Å with temperature in the range 20–300°C. In contrast, for the non-thermal desorption we found the carrier diffusion length of about 140 Å which did not depend significantly on the temperature.  相似文献   

9.
The temperature dependence (4.2–300 K) of ferromagnetic resonance (FMR) in the 3-cm range in films of yttrium-iron garnet (YIG)1.7–3 m thick, epitaxially grown on a paramagnetic gadolinium-gallium garnet (GGG) paramagnetic substrate is studied. It is found that with decrease in temperature, beginning at T 70 K, the temperature dependences of the resonant FMR fields res and res for magnetic fields applied parallel and perpendicular to the normal to the film deviate from similar dependences for a free thin YIG plate, which approach the value of / for YIG. This deviation increases approximately in proportion to T–1, reaching hundreds of Oe at T=4.2 K. It is established that the given effect is related to the additional static magnetic field Hp created in the YIG film by the paramagnetic substrate, and is dependent on the form of the latter.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 48–53, April, 1989.  相似文献   

10.
Epitaxial Gd2O3 thin films were successfully grown on Si (001) substrates using a two-step approach by laser molecular-beam epitaxy. At the first step, a ~0.8 nm thin layer was deposited at the temperature of 200 °C as the buffer layer. Then the substrate temperature was increased to 650 °C and in situ annealing for 5 min, and a second Gd2O3 layer with a desired thickness was deposited. The whole growth process is monitored by in situ reflection high-energy electron diffraction (RHEED). In situ RHEED analysis of the growing film has revealed that the first Gd2O3 layer deposition and in situ annealing are the critical processes for the epitaxial growth of Gd2O3 film. The Gd2O3 film has a monoclinic phase characterized by X-ray diffraction. The high-resolution transmission electron microscopy image showed all the Gd2O3 layers have a little bending because of the stress. In addition, a 5–6 nm amorphous interfacial layer between the Gd2O3 film and Si substrate is due to the in situ high temperature annealing for a long time. The successful Gd2O3/Si epitaxial growth predicted a possibility to develop the new functional microelectronics devices.  相似文献   

11.
A new thermomagnetic effect in a ferromagnetic film is discussed. When a temperature gradient is established along the x axis in a ferromagnetic sample, a transverse electric field arises in the same plane as the spontaneous-magnetization vector (in the case H = 0, where H is the external magnetic field). A phenomenological expression is given for the transverse electric field as a function of the square of the magnetization. Theory is given for the Nernst-Ettingshausen effect due to the spin-orbit interaction in a ferromagnetic film in the effectivemass approximation, and the Nernst-Ettingshausen constant is derived. The calculation is carried out by the density-matrix method derived by Kohn and Luttinger.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika, No. 11, pp. 28–32, November, 1969.  相似文献   

12.
The magnetic properties of thin ferromagnetic films are studied taking into account the magnetic anisotropy term in the Hamiltonian. In the second approximation equations are obtained for the magnetization of the monatomic layers parallel to the surface of the thin film. From these equations one obtains the Curie temperature, which depends on the thickness of the thin film and the ratio a between the anisotropy constant and the exchange energy between two neighbours. A value can be chosen for such that the thin film becomes ferromagnetic only for a thickness greater than a definite value and in this manner the theoretical results can be fitted to the experimental data. The situation in cobalt thin films is dealt with in particular.
. , . , . , , - , . , , .


The author extends his thanks to the research workers of CIFA 1 as well as to Dr. L. Valenta for information on the same subject.  相似文献   

13.
By a Green function approach, spin waves in a surface-rearranged ferromagnetic thin film are derived both analytically and numerically. Heisenberg exchange, bulk and surface anisotropy between nearest neighbors and external magnetic field are taken into account for an sc film with {001} surfaces. Because of the anisotropies, the dynamical matrix defined from the Green function equations is not Hermitian, so we generalize the Bogoliubov canonical transformation to derive the spin wave spectrum. The spin waves propagating inside the film result from the superposition of two sine or hyperbolic sine waves. The amplitude and polarization of spin waves are shown to be quite sensitive to the details of the surface rearrangements, whereas spin wave energies are not so sensitive to such rerrangements, except when soft modes occur in the unrearranged configuration. In that case, we show that when the surface rearrangement is taken into account, soft modes disappear in the spin wave spectrum.  相似文献   

14.
We introduce a discrete model describing the motion of a zigzag domain wall in a disordered ferromagnet with in-plane magnetization, driven by an external magnetic field. The main ingredients are dipolar interactions and anisotropy. We investigate the dynamic hysteresis by analyzing the effects of external field frequency on the coercive field by Monte Carlo simulations. Our results are in good agreement with experiments on Fe/GaAs films reported in literature, and we conclude that dynamic hysteresis in this case can be explained by a single propagating domain wall model without invoking domain nucleation.  相似文献   

15.
Raman scattering from one-magnon excitation has been observed for the first time in epitaxial BiFeO3 thin films grown on (1 1 1) SrTiO3 substrates. The intensities and the frequency of the magnon mode at 18.9 cm−1 (M1) showed a discrepancy at the characteristic temperatures of ∼140 and 200 K and the magnon mode at 27.9 cm−1 (M2) disappeared at ∼200 K suggesting spin-reorientation (SR) transition in the epitaxial BFO film. The dc susceptibility measurement showed a large discrepancy near these two temperatures evidently elucidating the spin-reorientation transition mechanism. The partial spectral weight of the magnon modes is believed to be transferred to the lowest phonon mode appearing at 72.8 cm−1 and higher magnon mode M2 disappearing near 200 K reveal magnon-phonon coupling near to SR transition.  相似文献   

16.
This paper reports on the results of reflectometric measurements of anisotropic (Co67Fe31V2) and almost isotropic (Fe) films prepared by magnetron sputtering. Nonspecular reflections and the corresponding peaks of the intensities of refracted neutrons have been observed for the alloy samples in magnetic fields H ≤ 7 Oe applied in the film plane along the easy magnetization axis. For iron films, angular splitting of the reflected neutron beam becomes observable only at H > 100 Oe and increases with an increase in the magnetic field. A general scheme has been proposed for this small-angle scattering with allowance made for different variants of changes in the Zeeman energy of neutrons. This scheme has allowed us to identify the magnetic structures of Co-Fe films. The magnetization of 0.15-μm-thick films with uniaxial and unidirectional textures leads to the formation of unidirectional textures characterized by different intensity distributions, for which the qualitative differences are retained with an increase in the magnetic field from 7 to 800 Oe. It has been revealed that, for 2.5-μm-thick films with the initial unidirectional texture, the oppositely magnetized states are nonequivalent.  相似文献   

17.
18.
By comparing the properties of In and Pb quantum wells in a scanning tunneling microscopy subsurface imaging experiment, we found the existence of lateral bound states, a 2D Mott-Hubbard correlation gap, induced by transverse confinement. Its formation is attributed to spin or charge overscreening of quasi-2D excitations. The signature of the 2D confinement-deconfinement transition is also experimentally observed, with the correlation gap being pinned in the middle of the conduction band. A self-organized 2D Anderson lattice is suggested as a new ground state.  相似文献   

19.
The effect of sample inhomogeneity on the ferromagnetic resonance linewidth is determined by diagonalization of a spin wave Hamiltonian for ferromagnetic thin films with inhomogeneities spanning a wide range of characteristic length scales. A model inhomogeneity is used that consists of size D grains and an anisotropy field H(p) that varies randomly from grain to grain in a film with thickness d and magnetization M(s). The resulting linewidth agrees well with the two-magnon model for small inhomogeneity, H(p)DpiM(s)d, the precession becomes localized and the spectrum approaches that of local precession on independent grains.  相似文献   

20.
We discuss the physical content of X-ray Detected Magnetic Resonance (XDMR), i.e. a novel spectroscopy which uses XMCD to probe the resonant precession of the local magnetization in a strong microwave pump field. We focus on the simplest case of a steady-state precession of elemental moments in the non-linear regime of angular foldover. Like XMCD, XDMR is element and edge selective and could become a unique tool to investigate how precessional dynamics can locally affect the spin and orbital magnetization of p- or d-projected DOS. This should be possible only in the limit where there is no overdamping due to ultrafast orbit-lattice relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号