首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
胡晨  金翼  朱少青  徐晔  水江澜 《应用化学》2020,37(4):380-386
LiFePO4电极材料具有比容量高、工作电压稳定、成本低及环境友好等优点,被视为理想的锂离子电池正极材料,是目前电动汽车主要正极材料之一。 然而在低温下LiFePO4电池性能显著降低,限制了其在冬季和高寒地区中的使用。 研究人员分析了低温下磷酸铁锂电池性能快速下降的原因,并提出解决办法。 本文概述了提高磷酸铁锂电池低温性能的4个方法:1)脉冲电流;2)电解液添加剂;3)表面包覆;4)体相掺杂。  相似文献   

2.
锂离子电池正极材料LiFePO_4在Fe位掺杂的研究进展   总被引:1,自引:0,他引:1  
橄榄石型LiFePO4是近年发展起来的一种锂离子电池正极材料,但是LiFePO4的电子导电率低和锂离子扩散速度慢限制了其实用化,需要改进.其中一种很有效的方法就是在LiFePO4的晶格中掺杂金属离子,使其产生晶格缺陷,促进Li+扩散,改善晶体内部的导电性能.LiFePO4有Li(M1)和Fe(M2)2个金属位,可使用金属离子对其改性.本文综述了对锂离子电池正极材料LiFePO4在Fe(M2)位掺杂的研究进展.LiFePO4在Fe(M2)位的掺杂主要采用Mn2+,Ni2+,Co2+,Mg2+等几种金属离子.  相似文献   

3.
We report a new synchrotron based in situ X-ray diffraction (XRD) technique to study the chemical delithiation of LiFePO(4). This technique provides a new powerful tool to study chemical reactions with excellent time-resolving power for dynamic studies.  相似文献   

4.
以Fe(NO3)3,LiNO3,NH4H2PO4和NaNO3为原料,采用简单的液相-碳热还原法合成Li0.97Na0.03FePO4/C复合正极材料.使用X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电等测试技术研究了材料的结构及倍率充放电性能.通过循环伏安(CV)曲线和电化学阻抗谱(EIS)研究电极反应过程中的动力学特点.结果表明,Na掺杂形成了具有橄榄石结构的Li0.97Na0.03FePO4固溶体,并增大了晶格中Li+一维扩散通道,使LiFePO4/C的电荷转移电阻减小了约2/3,Li+扩散系数提高了3~4倍.因此,Li0.97Na0.03FePO4/C首次放电比容量在0.1 C和2 C倍率下分别达到152 mAh g-1和109 mAh g-1,比未掺杂的LiFePO4/C的放电比容量分别提高了4.83%和62.69%.  相似文献   

5.
徐土根  王连邦  李晟  马淳安 《化学学报》2009,67(20):2275-2278
磷酸铁锂作为动力锂离子电池的正极材料正逐渐走向市场.以Li3PO4,FePO4,Fe粉以及乙醇为原料,采用高温热分解方法成功地制得乙醇碳包覆的LiFePO4正极材料.实验结果表明,该LiFePO4/C材料颗粒均匀,分散性好,粒径大约在200nm~1μm之间,颗粒表面被碳包覆,颗粒之间由碳纤维连接.该正极材料首次放电容量达137mAh·g-1,首次充放电库仑效率在95%以上,50次循环后,放电容量基本不衰减,显示出良好的循环稳定性和可逆性.本研究降低了锂离子电池的生产成本,显示了良好的工业化应用前景.  相似文献   

6.
Journal of Solid State Electrochemistry - Olivine LiFePO4 (LFP) is a promising cathode material for high-rated lithium-ion batteries. However, olivine faced a severe disadvantage of low...  相似文献   

7.
通常需要将电活性材料与导电剂、粘接剂等辅助物质混合后,制成复合电极来评测材料的电化学性能,但辅助物质和复合电极结构可能影响评测结果的准确性. 由于单颗粒微电极可选取单一颗粒进行测试,无需加入添加剂材料,因此,采用单颗粒微电极评测材料性能可以得到材料的本征性能. 同时,单颗粒微电极还可以实现对材料的快速、精确评测. 本文利用单颗粒微电极方法测试了球形LiFePO4颗粒的循环伏安特性、循环稳定性和动力学性能. 结果表明,单颗粒微电极可以20 mV?s-1的速率快速扫描、精确测试,测得锂离子在该颗粒中的扩散系数约为2.4 ~ 3.2?10-11 cm2?s-1,电化学反应的控制步骤为锂离子的固相扩散控制. 另外,LiFePO4颗粒在该单颗粒微电极构成的电池中表现出良好的循环稳定性. 这些显示了单颗粒微电极在电极材料特性研究中的可行性.  相似文献   

8.
橄榄石型LiFePO4具有高的理论比容量、高倍率特性、优越的电化学和热稳定性能、循环寿命长且绿色环保等优点,被认为是新一代动力型锂离子电池理想的正极材料之一.LiFePO4因本身结构的缺陷导致了其极低的电导率和Li+扩散速率,限制了该材料在动力电池的中实际应用.本文综述了通过表面包覆修饰、金属阳离子晶体结构内掺杂和导电...  相似文献   

9.
胡林  李征  曾照强 《电化学》2009,15(3):250
应用高温固相反应合成锂离子电池正极材料LiFePO4和LiFe0.9Mg0.1PO4.不同浓度的K2S2O8水溶液氧化LiFe0.9Mg0.1PO4制备部分脱锂两相混合物Li0.4Fe0.9Mg0.1PO4及完全脱锂单相化合物Li0.1Fe0.9Mg0.1PO4.X射线衍射物相分析(XRD),选区电子衍射(SAED)和高分辨原子图像(HRTEM)测试表明,脱锂相Li0.1Fe0.9Mg0.1PO4是单相化合物,没有发生相分离.点阵参数计算表明,LiFe0.9Mg0.1PO4体系嵌锂相和脱锂相的晶格错配度与LiFePO4体系相比有所降低,这正是锂离子电池正极材料LiFe0.9Mg0.1PO4具有高倍率循环充放电比容量的结构基础.  相似文献   

10.
Journal of Solid State Electrochemistry - The solid-state method is a mainly adopted large-scale preparation of LiFePO4 cathode materials for Li-ion batteries but suffers from a challenge of...  相似文献   

11.
Tao  Yong  Cao  Yanbing  Hu  Guorong  Chen  Pengwei  Peng  Zhongdong  Du  Ke  Jia  Ming  Huang  Yong  Xia  Jin  Li  Luyu  Xie  Xiaoming 《Journal of Solid State Electrochemistry》2019,23(7):2243-2250
Journal of Solid State Electrochemistry - LiFePO4 cathode material is considered as prospective materials for lithium-ion batteries and attracted great interest because of excellent cyclic...  相似文献   

12.
X-ray absorption spectroscopy (XAS) was used to investigate the local structure arrangements of submicrocrystalline lithium iron phosphate and its precursors. The former material, proven to be very promising as active cathode material in lithium metal and lithium-ion batteries, was synthesized through a new procedure that combines a simple sol-gel precipitation with a moderate temperature (e.g., low cost) heat treatment. X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra taken at the Fe K-edge pointed out the modification of the Fe site during the synthesis steps that allow one to produce the submicrometer size crystalline LiFePO4 (active material) useful for batteries applications. The XAS investigation has shown that such a material is different from the conventional crystalline LiFePO4 on the short-range order. The difference is attributed to the synthesis procedure.  相似文献   

13.
Changes in the local electronic structure at atoms around Li sites in the olivine phase of LiFePO4 were studied during delithiation. Electron energy loss spectrometry was used for measuring shifts and intensities of the near-edge structure at the K-edge of O and at the L-edges of P and Fe. Electronic structure calculations were performed on these materials with a plane-wave pseudopotential code and with an atomic multiplet code with crystal fields. It is found that both Fe and O atoms accommodate some of the charge around the Li+ ion, evidently in a hybridized Fe-O state. The O 2p levels appear to be fully occupied at the composition LiFePO4. With delithiation, however, these states are partially emptied, suggestive of a more covalent bonding to the oxygen atom in FePO4 as compared to LiFePO4. The same behavior is found for the white lines at the Fe L2,3-edges, which also undergo a shift in energy upon delithiation. A charge transfer of up to 0.48 electrons is found at the Fe atoms, as determined from white line intensity variations after delithiation, while the remaining charge is compensated by O atoms. No changes are evident at the P L2,3-edges.  相似文献   

14.
锂离子电池正极材料LiFePO4的结构与电化学性能的研究   总被引:5,自引:2,他引:5  
利用固相法和球化工艺合成了橄榄石型LiFePO4粉体.该粉体由直径为10-15μm的团簇体组成.以合成材料为正极的锂离子电池的循环伏安特性表明,在循环过程中,锂离子插入和脱出具有单一的可逆机制.在不同温度下,材料的交流复阻抗谱表明,随着温度的升高,电池电化学阻抗明显减小.充放电测试结果表明,在17mA/cm2的电流密度下,材料工作电压平稳,电极极化效应较小,容量接近其理论值.在170mA/cm2的电流密度下,电池容量没有明显的减小趋势,而在170mA/cm2电流密度以上时,电池容量迅速降低,且电极极化效应比较显著.经过较大的电流密度测试后,材料在小电流密度下仍然保持着接近理论容量的循环容量.  相似文献   

15.
以Fe2O3为铁源原料, 利用热还原法成功地制备了LiFePO4/C复合材料. 用XRD以及SEM对材料的晶体结构以及表面形貌进行了表征. 通过循环伏安和充放电测试研究了材料的电化学性能. 研究结果表明, 于700 ℃下制备的LiFePO4/C复合材料在0.1C的倍率下可以得到放电容量144.8 mA·h/g, 在循环160次后, 容量仍保持在141.4 mA·h/g. 这种以廉价的Fe2O3代替目前常用的二价铁盐原料方法, 具有减少LiFePO4合成成本的优点.  相似文献   

16.
Phospho-olivine LiFePO4 as a promising cathode material for lithium ion batteries has aroused considerable interest due to its low cost, benign for environment, high temperature capability and relatively high energy density1,2. The main drawback of LiFePO…  相似文献   

17.
Transition metal phosphates such as LiFePO(4) have been recognized as very promising electrodes for lithium-ion batteries because of their energy storage capacity combined with electrochemical and thermal stability. A key issue in these materials is to unravel the factors governing electron and ion transport within the lattice. Lithium extraction from LiFePO(4) results in a two-phase mixture with FePO(4) that limits the power characteristics owing to the low mobility of the phase boundary. This boundary is a consequence of low solubility of the parent phases, and its mobility is impeded by slow migration of the charge carriers. In principle, these limitations could be diminished in a solid solution, Li(x)FePO(4). Here, we show that electron delocalization in the solid solution phases formed at elevated temperature is due to rapid small polaron hopping and is unrelated to consideration of the band gap. We give the first experimental evidence for a strong correlation between electron and lithium delocalization events that suggests they are coupled. Furthermore, the exquisite frequency sensitivity of M?ssbauer measurements provides direct insight into the electron hopping rate.  相似文献   

18.
Charging ahead: Separate values for the simultaneous electronic and ionic conductivity of a conjugated polymer containing poly(3-hexylthiophene) and poly(ethylene oxide) (P3HT-PEO) were determined by using ac impedance and dc techniques. P3HT-PEO was used as binder, and transporter of electronic charge and Li(+) ions in a LiFePO(4) cathode, which was incorporated into solid-state lithium batteries (see picture; TFSI=bis(trifluoromethane sulfone)imide).  相似文献   

19.
Flowerlike LiFePO4 particles self-assembled by plate-like crystals with about 200 nm thickness were prepared by the poly(ethylene glycol)-assisted hydrothermal synthesis. Poly(ethylene glycol) in the hydrothermal system played an important role in reducingthe thickness of the plate-like LiFePO4 crystals as a co-solvent and forming the flower-like structure as a soft template. The flowerlike LiFePO4 exhibits high discharge capacity of 140 mAh/g and shows quite good cycling performance in the lithium-ion batteries. Con-sidering that the conductive carbon in the obtained LiFePO4 is negligible, the excellent cellperformance suggests that the flowerlike LiFePO4 is a promising cathode material for the lithium-ion batteries.  相似文献   

20.
二氟二草酸硼酸锂对LiFePO4/石墨电池高温性能的影响   总被引:2,自引:0,他引:2  
研究了二氟二草酸硼酸锂(LiODFB)作为锂盐加入到碳酸丙烯酯(PC)+碳酸乙烯酯(EC)+碳酸甲乙酯(EMC)(质量比为1:1:3)混合溶剂中对LiFePO4/石墨电池高温(60 ℃)循环性能的影响. 用线性扫描伏安法(LSV)测试了电解液的电化学窗口. 通过等离子发射光谱(ICP)和能量散射光谱(EDS)对LiFePO4材料高温条件下在不同电解液中的稳定性进行了研究; 并用扫描电镜(SEM)和电化学交流阻抗谱(EIS)分析了石墨负极表面的固体电解液相界面(SEI)膜的热稳定性. 结果表明: 一方面LiODFB基电解液能抑制LiFePO4材料在高温条件下Fe(II)的溶解, 防止溶解的Fe(II)在石墨上还原, 有效地降低电池阻抗; 另一方面, 在LiODFB基电解液中形成的石墨负极表面SEI膜具有更好的热稳定性, 能显著提高LiFePO4/石墨电池的高温循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号