首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 983 毫秒
1.
Dicarboxylic acids are important products from photooxidation of volatile organic compounds and are believed to play an important role in the formation and growth of atmospheric secondary organic aerosols. In this paper, the interaction of five dicarboxylic acids, i.e., oxalic acid (C(2)H(2)O(4)), malonic acid (C(3)H(4)O(4)), maleic acid (C(4)H(4)O(4)), phthalic acid (C(8)H(6)O(4)), and succinic acid (C(4)H(6)O(4)), with sulfuric acid and ammonia has been studied, employing quantum chemical calculations, quantum theory of atoms in molecules (QTAIM), and the natural bond orbital (NBO) analysis methods. Several levels of quantum chemical calculations are considered, including coupled-cluster theory with single and double excitations with perturbative corrections for the triple excitations (CCSD(T)) and two density functionals, B3LYP and PW91PW91. The free energies of formation of the heterodimer and heterotrimer clusters suggest that dicarboxylic acids can contribute to the aerosol nucleation process by binding to sulfuric acid and ammonia. In particular, the formation energies and structures of the heterotrimer clusters show that dicarboxylic acids enhance nucleation in two directions, in contrast to monocarboxylic acids.  相似文献   

2.
Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO(x) concentrations as well as temperature, humidity, and particle acidity. Such knowledge should be useful for interpreting the results of laboratory and field studies and for developing atmospheric chemistry models. A number of recommendations for future research are also presented.  相似文献   

3.
Oxidative processing (i.e., "aging") of organic aerosol particles in the troposphere affects their cloud condensation nuclei (CCN) activity, yet the chemical mechanisms remain poorly understood. In this study, oleic acid aerosol particles were reacted with ozone while particle chemical composition and CCN activity were simultaneously monitored. The CCN activated fraction at 0.66 +/- 0.06% supersaturation was zero for 200 nm mobility diameter particles exposed to 565 to 8320 ppmv O3 for less than 30 s. For greater exposure times, however, the particles became CCN active. The corresponding chemical change shown in the particle mass spectra was the oxidation of aldehyde groups to form carboxylic acid groups. Specifically, 9-oxononanoic acid was oxidized to azelaic acid, although the azelaic acid remained a minor component, comprising 3-5% of the mass in the CCN-inactive particles compared to 4-6% in the CCN-active particles. Similarly, the aldehyde groups of alpha-acyloxyalkylhydroperoxide (AAHP) products were also oxidized to carboxylic acid groups. On a mass basis, this conversion was at least as important as the increased azelaic acid yield. Analysis of our results with K?hler theory suggests that an increase in the water-soluble material brought about by the aldehyde-to-carboxylic acid conversion is an insufficient explanation for the increased CCN activity. An increased concentration of surface-active species, which decreases the surface tension of the aqueous droplet during activation, is an interpretation consistent with the chemical composition observations and K?hler theory. These results suggest that small changes in particle chemical composition caused by oxidation could increase the CCN activity of tropospheric aerosol particles during their atmospheric residence time.  相似文献   

4.
Exploratory evidence from our laboratories shows that acidic surfaces on atmospheric aerosols lead to very real and potentially multifold increases in secondary organic aerosol (SOA) mass and build-up of stabilized nonvolatile organic matter as particles age. One possible explanation for these heterogeneous processes are the acid-catalyzed (e.g., H2SO4 and HNO3) reactions of atmospheric multifunctional organic species (e.g., multifunctional carbonyl compounds) that are accommodated onto the particle phase from the gas phase. Volatile organic hydrocarbons (VOCs) from biogenic sources (e.g., terpenoids) and anthropogenic sources (aromatics) are significant precursors for multifunctional organic species. The sulfur content of fossil fuels, which is released into the atmosphere as SO2, results in the formation of secondary inorganic acidic aerosols or indigenous acidic soot particles (e.g., diesel soot). The predominance of SOAs contributing to PM2.5 (particulate matter, that is, 2.5 microm or smaller than 2.5 microm), and the prevalence of sulfur in fossil fuels suggests that interactions between these sources could be considerable. This study outlines a systematic approach for exploring the fundamental chemistry of these particle-phase heterogeneous reactions. If acid-catalyzed heterogeneous reactions of SOA products are included in next-generation models, the predicted SOA formation will be much greater and have a much larger impact on climate-forcing effects than we now predict. The combined study of both organic and inorganic acids will also enable greater understanding of the adverse health effects in biological pulmonary organs exposed to particles.  相似文献   

5.
Aqueous-phase chemistry of glyoxal may play an important role in the formation of highly oxidized secondary organic aerosol (SOA) in the atmosphere. In this work, we use a novel design of photochemical reactor that allows for simultaneous photo-oxidation and atomization of a bulk solution to study the aqueous-phase OH oxidation of glyoxal. By employing both online aerosol mass spectrometry (AMS) and offline ion chromatography (IC) measurements, glyoxal and some major products including formic acid, glyoxylic acid, and oxalic acid in the reacting solution were simultaneously quantified. This is the first attempt to use AMS in kinetics studies of this type. The results illustrate the formation of highly oxidized products that likely coexist with traditional SOA materials, thus, potentially improving model predictions of organic aerosol mass loading and degree of oxidation. Formic acid is the major volatile species identified, but the atmospheric relevance of its formation chemistry needs to be further investigated. While successfully quantifying low molecular weight organic oxygenates and tentatively identifying a reaction product formed directly from glyoxal and hydrogen peroxide, comparison of the results to the offline total organic carbon (TOC) analysis clearly shows that the AMS is not able to quantitatively monitor all dissolved organics in the bulk solution. This is likely due to their high volatility or low stability in the evaporated solution droplets. This experimental approach simulates atmospheric aqueous phase processing by conducting oxidation in the bulk phase, followed by evaporation of water and volatile organics to form SOA.  相似文献   

6.
The kinetics of heterogeneous reactions involving supercooled organic droplets is reported for the first time. Reactions between ozone and internally-mixed sub-micrometre particles containing an unsaturated alkenoic acid, oleic acid, and an n-alkanoic acid, myristic acid, were studied as a simple model for the oxidation of meat-cooking aerosol. The reactions were followed by monitoring the rate of oleic acid loss using an Aerosol CIMS (chemical ionization mass spectrometry) instrument for real-time particle analysis. Evidence of as much as 32 degrees C supercooling at room temperature was observed depending on particle composition. FTIR spectra of the aerosol also demonstrate features indicative of supercooling. Particles in which crystallization was induced by cooling below room temperature demonstrated decreased reactivity by a factor of 12 compared to supercooled particles of the same composition. This drastic difference in reactivity could have significant implications for the lifetimes of reactive species in ambient aerosol as well as for the accurate source apportionment of particulate matter.  相似文献   

7.
The heterogeneous reactions of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reaction products evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new (BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during the reaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products. In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could play important roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.  相似文献   

8.
A method is presented for the determination of acidic products from terpene oxidation in filter samples of the atmospheric particle phase. Oxidation products of monoterpenes are believed to add a large fraction to the secondary organic aerosol (SOA) in the troposphere. Those products with structures containing one or more carboxylic acid groups have especially low vapour pressures and therefore they are believed to contribute substantially to the particle phase. Although many experiments were performed in simulation chambers to study the SOA generation by oxidation of terpenes, concentration measurements of products in the atmospheric particle phase are still rare. This is especially true for oxidation products of terpenes other than α- and β-pinene. Therefore, we developed a method for the quantification of acidic products from terpene oxidation in atmospheric aerosol samples. After passing a PM 2.5 (PM = particulate matter) pre-separator to remove coarse particles, fine atmospheric particles were collected onto quartz fibre filters. A backup filter was placed behind the first filter to estimate possible sampling artifacts. The filters were extracted in an ultrasonic bath using methanol. After enrichment and re-dissolving in water the samples were analysed using a capillary-HPLC-ESI(−)-MSn set-up. The ion trap mass spectrometer could be used to gain structural information about the analytes and to enhance the selectivity of the measurements by using its MS/MS capability. A variety of products from different terpenes could be identified and quantified in samples of the ambient atmosphere using reference data from chamber experiments. Due to strong matrix effects quantification of samples from the real atmosphere had to be done by the standard addition method.  相似文献   

9.
Gas‐phase oxidation routes of biogenic emissions, mainly isoprene and monoterpenes, in the atmosphere are still the subject of intensive research with special attention being paid to the formation of aerosol constituents. This laboratory study shows that the most abundant monoterpenes (limonene and α‐pinene) form highly oxidized RO2 radicals with up to 12 O atoms, along with related closed‐shell products, within a few seconds after the initial attack of ozone or OH radicals. The overall process, an intramolecular ROO→QOOH reaction and subsequent O2 addition generating a next R′OO radical, is similar to the well‐known autoxidation processes in the liquid phase (QOOH stands for a hydroperoxyalkyl radical). Field measurements show the relevance of this process to atmospheric chemistry. Thus, the well‐known reaction principle of autoxidation is also applicable to the atmospheric gas‐phase oxidation of hydrocarbons leading to extremely low‐volatility products which contribute to organic aerosol mass and hence influence the aerosol–cloud–climate system.  相似文献   

10.
为了从本质上认识和了解大气氧化反应进程以及二次有机气溶胶的形成机制,设计并搭建了一套实验室模拟烟雾箱系统.将质子转移反应质谱、同步辐射光电离质谱及气溶胶激光飞行时间质谱等特色质谱检测系统与烟雾箱结合,用于大气氧化反应气相和粒子相产物的定量与定性分析.通过一系列表征实验获得了该系统的基本参数,如烟雾箱内温度和光强特征,气体化合物和颗粒物的壁损耗速率,零空气的背景反应性及实验结果的可重复性.臭氧氧化α-蒎烯定量化实验和OH启动异戊二烯光氧化反应的定性检测结果进一步表明了该系统能够满足大气化学反应过程中气相和粒子相化学成分的定性分析及二次有机气溶胶的定量化研究的需要.  相似文献   

11.
One of the most abundant carboxylic acids measured in the atmosphere is acetic acid (CH(3)C(O)OH), present in rural, urban, and remote marine environments in the low-ppb range. Acetic acid concentrations are not well reproduced in global 3-D atmospheric models because of the poor inventory of sources and sinks to model its global distribution. To understand the complete oxidation of acetic acid in the atmosphere initiated by OH radicals, ab initio calculations are performed to describe in detail the energetics of the reaction potential energy surface (PES). The proposed reaction mechanism suggests that the CH(3)C(O)OH + OH reaction takes place via three pathways: the addition of OH to the central carbon, the abstraction of a methyl hydrogen, and the abstraction of an acidic hydrogen. The PES is characterized by prereactive H-complexes, transition states, and more interestingly unique radical-mediated isomerization reactions. From the analysis of the energetics, acetic acid atmospheric oxidation will proceed mainly via the abstraction of the acidic hydrogen, consistent with previous experimental and theoretical studies. The major byproducts from each pathway are identified. Glyoxylic acid is suggested to be a major byproduct of the atmospheric oxidation of acetic acid. The atmospheric fate of glyoxylic acid is discussed.  相似文献   

12.
Vinclozolin is a widely used fungicide that can be released into the atmosphere via application and volatilization. This paper reports an experimental investigation on the heterogeneous ozonation of vinclozolin particles. The ozonation of vinclozolin adsorbed on azelaic acid particles under pseudo-first-order conditions is investigated online with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The ozonation products are analyzed with a combination of VUV-ATOFMS and GC/MS. Two main ozonation products are observed. The formation of the ozonation products results from addition of O(3) on the C-C double bond of the vinyl group. The heterogeneous reactive rate constant of vinclozolin particles under room temperature is (2.4 ± 0.4) × 10(-17) cm(3) molecules(-1) s(-1), with a corresponding lifetime at 100 ppbv O(3) of 4.3 ± 0.7 h, which is almost comparable with the estimated lifetime due to the reaction with atmospheric OH radicals (~1.7 h). The reactive uptake coefficient for O(3) on vinclozolin particles is (6.1 ± 1.0) × 10(-4).  相似文献   

13.
New polynuclear nickel trimethylacetates [Ni6(OH)4(C5H9O2)8(C5H10O2)4] (6), [Ni7(OH)7(C5H9O2)7(C5H10O2)6(H2O)] x 0.5 C6H14 x 0.5 H2O (7), [Ni8(OH)4(H2O)2(C5H9O2)12] (8), and [Ni9(OH)6(C5H9O2)12(C5H10O2)4] x C5H10O2 x 3 H2O (9), where C5H9O2 is trimethylacetate and C5H10O2 is trimethylacetic acid, have been found. Their structures were determined by X-ray crystallography. Because of their high solubility in low-polarity organic solvents, compounds 6-9 reacted with stable organic radicals to form the first heterospin compounds based on polynuclear Ni(II) trimethylacetate and nitronyl nitroxides containing pyrazole (L(1)-L(3)), methyl (L(4)), or imidazole (L(5)) substituent groups, respectively, in side chain [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L(1))2(H2O)] x 0.5 C6H14 x H2O (6+1a), [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L2)2(H2O)] x H2O (6+1b), [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L(3))2(H2O)] x H2O (6+1c), [Ni6(OH)3(C5H9O2)9(C5H10O2)4(L(4))] x 1.5 C6H14 (6'), and [Ni4OH)3(C5H9O2)5(C5H10O2)4(L(5))] x 1.5 C7H8 (4). Their structures were also determined by X-ray crystallography. Although Ni(II) trimethylacetates may have varying nuclearity and can change their nuclearity during recrystallization or interactions with nitroxides, this family of compounds is easy to study because of its topological relationship. For any of these complexes, the polynuclear framework may be derived from the [Ni6] polynuclear fragment {Ni6(mu4-OH)2(mu3-OH)2(mu2-C5H9O2-O,O')6(mu2-C5H9O2-O,O)(mu4-C5H9O2-O,O,O',O')(C5H10O2)4}, which is shaped like an open book. On the basis of this fragment, the structure of 7-nuclear compounds (7 and 6+1a-c) is conveniently represented as the result of symmetric addition of other mononuclear fragments to the four Ni(II) ions lying at the vertexes of the [Ni6] open book. The 9-nuclear complex is formed by the addition of trinuclear fragments to two Ni(II) ions lying on one of the lateral edges of the [Ni6] open book. This wing of the 9-nuclear complex preserves its structure in another type of 6-nuclear complex (6') with the boat configuration. If, however, two edge-sharing Ni(II) ions are removed from [Ni6] (one of these lies at a vertex of the open book and the other, on the book-cover line), we obtain a 4-nuclear fragment recorded in the molecular structure of 4. Twinning of this 4-nuclear fragment forms highly symmetric molecule 8, which is a new chemical version of cubane.  相似文献   

14.
Atmospheric aerosol particles are important in many atmospheric processes such as: light scattering, light absorption, and cloud formation. Oxidation reactions continuously change the chemical composition of aerosol particles, especially the organic mass component, which is often the dominant fraction. These ageing processes are poorly understood but are known to significantly affect the cloud formation potential of aerosol particles. In this study we investigate the effect of humidity and ozone on the chemical composition of two model organic aerosol systems: oleic acid and arachidonic acid. These two acids are also compared to maleic acid an aerosol system we have previously studied using the same techniques. The role of relative humidity in the oxidation scheme of the three carboxylic acids is very compound specific. Relative humidity was observed to have a major influence on the oxidation scheme of maleic acid and arachidonic acid, whereas no dependence was observed for the oxidation of oleic acid. In both, maleic acid and arachidonic acid, an evaporation of volatile oxidation products could only be observed when the particle was exposed to high relative humidities. The particle phase has a strong effect on the particle processing and the effect of water on the oxidation processes. Oleic acid is liquid under all conditions at room temperature (dry or elevated humidity, pure or oxidized particle). Thus ozone can easily diffuse into the bulk of the particle irrespective of the oxidation conditions. In addition, water does not influence the oxidation reactions of oleic acid particles, which is partly explained by the structure of oxidation intermediates. The low water solubility of oleic acid and its ozonolysis products limits the effect of water. This is very different for maleic and arachidonic acid, which change their phase from liquid to solid upon oxidation or upon changes in humidity. In a solid particle the reactions of ozone and water with the organic particle are restricted to the particle surface and hence different regimes of reactivity are dictated by particle phase. The potential relevance of these three model systems to mimic ambient atmospheric processes is discussed.  相似文献   

15.
Oxidation of thin multilayered films of undecylenic (10-undecenoic) acid by gaseous ozone was investigated using a combination of spectroscopic and mass spectrometric techniques. The UV absorption spectrum of the oxidized undecylenic acid film is significantly red-shifted compared to that of the initial film. Photolysis of the oxidized film in the tropospheric actinic region (lambda > 295 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the observed photochemical activity. The presence of peroxides is confirmed by mass-spectrometric analysis of the oxidized sample and an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is observed. The data strongly imply the importance of photochemistry in aging of atmospheric organic aerosol particles.  相似文献   

16.
Large amounts of volatile organic compounds (VOCs) are emitted into the atmosphere from both human and natural sources. A significant portion of VOCs would be oxidized via their reactions with atmospheric oxidants like OH, NO3, ozone, etc. The products of the oxidation reactions are often of low volatility and may condense to form secondary organic aerosols (SOA). To study the effect of VOC oxidation in aerosol formation, we are building an oxidation flow reactor system, which consists of (1) a 22-l aluminum chamber, (2) an ozone source with an ozone detector, (3) a UV-C (254 nm) lamp, (4) a photoionization detector to measure the effective VOC concentration, (5) various flow/concentration controlling apparatuses, and (6) a scanning mobility particle sizer to monitor the generated particles. Under the conditions of high UV and ozone levels, the oxidation process can be speeded up by orders of magnitude in this reactor. We hope to use this reactor: (i) to learn the “potential” mass of SOA that can be formed from a given VOC source like a traffic or industry site; (ii) to trace back the SOA source by utilizing the shortened reaction times; (iii) to learn the trends from VOC to SOA.  相似文献   

17.
The reactive uptake coefficients (γ) of O(3), NO(2), N(2)O(5), and NO(3) by levoglucosan, abietic acid, nitroguaiacol, and an atmospherically relevant mixture of those species serving as surrogates for biomass burning aerosol have been determined employing a chemical ionization mass spectrometer coupled to a rotating-wall flow-tube reactor. γ of O(3), NO(2), N(2)O(5), and NO(3) in the presence of O(2) are in the range of 1-8 × 10(-5), <10(-6)-5 × 10(-5), 4-6 × 10(-5), and 1-26 × 10(-3), respectively, for the investigated organic substrates. Within experimental uncertainties the uptake of NO(3) was not sensitive to relative humidity levels of 30 and 60%. NO(3) uptake experiments involving substrates of levoglucosan, abietic acid, and the mixture exhibit an initial strong uptake of NO(3) followed by NO(3) gas-phase recovery as a function of NO(3) exposure. In contrast, the uptake of NO(3) by nitroguaiacol continuously proceeds at the same efficiency for investigated NO(3) exposures. The derived oxidative power, i.e. the product of γ and atmospheric oxidant concentration, for applied oxidants is similar or significantly larger in magnitude than for OH, emphasizing the potential importance of these oxidants for particle oxidation. Estimated atmospheric lifetimes for the topmost organic layer with respect to O(3), NO(2), N(2)O(5), and NO(3) oxidation for typical polluted conditions range between 1-112 min, indicating the potential for significant chemical transformation during atmospheric transport. The contact angles determined prior to, and after heterogeneous oxidation by NO(3), representative of 50 ppt for 1 day, do not decrease and thus do not indicate a significant increase in hygroscopicity with potential impacts on water uptake and cloud formation processes.  相似文献   

18.
Acidic tropospheric aerosols contain inorganic species such as sulfurous acid (H(2)SO(3)). As the main alkaline species, ammonia (NH(3)) plays an important role in the heterogeneous neutralization of these acidic aerosols. An aerosol flow-tube apparatus was used to obtain simultaneous optical and size distribution measurements using FTIR and SMPS measurements, respectively, as a function of relative humidity and aerosol chemical composition. A novel chemiluminescence apparatus was also used to measure ammonium ion concentration [NH(4)(+)]. The interactions between ammonia and hydrated sulfur dioxide (SO(2)·H(2)O) were studied at different humidities and concentrations. SO(2)·H(2)O is an important species as it represents the first intermediate in the overall atmospheric oxidation process of sulfur dioxide to sulfuric acid (H(2)SO(4)). This complex was produced within gaseous, aqueous, and aerosol SO(2) systems. The addition of ammonia gave mainly hydrogen sulfite (SHO(3)(-)) tautomers and disulfite ions (S(2)O(5)(2-)). These species were prevalent at high humidities enhancing the aqueous nature of sulfur(IV) species. Their weak acidity is evident due to the low [NH(4)(+)] produced. Size distributions obtained correlated well with the various stages of particulate compositional development.  相似文献   

19.
Adams RD  Miao S 《Inorganic chemistry》2004,43(26):8414-8426
The reaction of CpMoMn(mu-S(2))(CO)(5), 1, with 1,4-benzoquinone in the presence of irradiation with visible light yielded the quinonedithiolato complex CpMoMn(CO)(5)(mu-S(2)C(6)H(2)O(2)), 2. The new complex CpMoMn(CO)(5)(mu-S(2)C(6)Cl(2)O(2)) (4) was synthesized similarly from 1 and 2,3-dichloro-1,4-benzoquinone. Compounds 2 and 4 were reduced with hydrogen to yield the hydroquinone complexes CpMoMn(CO)(5)[mu-S(2)C(6)H(2)(OH)(2)], 3, and CpMoMn(CO)(5)[mu-S(2)C(6)Cl(2)(OH)(2)], 5. UV-vis irradiation of solutions of Fe(2)(CO)(6)(mu-S(2)) and 1,4-benzoquinone yielded the hydroquinone complex Fe(2)(CO)(6)[mu-S(2)C(6)H(2)(OH)(2)], 6. Compound 6 was oxidized to the quinone complex Fe(2)(CO)(6)(mu-S(2)C(6)H(2)O(2)), 7, by using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Substitution of the CO ligands on 6 by PPh(3) yielded the derivatives Fe(2)(CO)(5)(PPh(3))[mu-S(2)C(6)H(2)(OH)(2)], 8, and Fe(2)(CO)(4)(PPh(3))(2)[mu-S(2)C(6)H(2)(OH)(2)], 9. The electrochemical properties of 3, 5, 6, 8, and 9 were measured by cyclic voltammetry. The molecular structure of each of the new compounds 2-9 was established by single-crystal X-ray diffraction analyses.  相似文献   

20.
Recent work in our laboratory has shown that the photooxidation of isoprene (2-methyl-1,3-butadiene, C(5)H(8)) leads to the formation of secondary organic aerosol (SOA). In the current study, the chemical composition of SOA from the photooxidation of isoprene over the full range of NO(x) conditions is investigated through a series of controlled laboratory chamber experiments. SOA composition is studied using a wide range of experimental techniques: electrospray ionization-mass spectrometry, matrix-assisted laser desorption ionization-mass spectrometry, high-resolution mass spectrometry, online aerosol mass spectrometry, gas chromatography/mass spectrometry, and an iodometric-spectroscopic method. Oligomerization was observed to be an important SOA formation pathway in all cases; however, the nature of the oligomers depends strongly on the NO(x) level, with acidic products formed under high-NO(x) conditions only. We present, to our knowledge, the first evidence of particle-phase esterification reactions in SOA, where the further oxidation of the isoprene oxidation product methacrolein under high-NO(x) conditions produces polyesters involving 2-methylglyceric acid as a key monomeric unit. These oligomers comprise approximately 22-34% of the high-NO(x) SOA mass. Under low-NO(x) conditions, organic peroxides contribute significantly to the low-NO(x) SOA mass (approximately 61% when SOA forms by nucleation and approximately 25-30% in the presence of seed particles). The contribution of organic peroxides in the SOA decreases with time, indicating photochemical aging. Hemiacetal dimers are found to form from C(5) alkene triols and 2-methyltetrols under low-NO(x) conditions; these compounds are also found in aerosol collected from the Amazonian rainforest, demonstrating the atmospheric relevance of these low-NO(x) chamber experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号