首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吸收增强式甲烷水蒸气重整制氢反应可以生成高浓度的H2和较低浓度的CO、CO2。研究建立了考虑钙基吸收剂活性下降对吸收增强式甲烷水蒸气重整制氢过程影响的多次循环反应模型,在实验数据验证的基础上,计算了三种吸收剂活性下降特性对吸收增强式重整制氢过程的影响。结果表明,对于石灰石吸收剂,产生高纯H2的时间随循环次数的增加而急剧下降;白云石循环反应活性提高,产生高纯H2的时间随循环次数的增加而缓慢下降;CaO/Ca12Al14O33的循环使用次数明显大于石灰石和白云石。  相似文献   

2.
In this work,a series of polyethyleneimine(PEI) functionalized commercial silica gel were prepared by wet impregnation method and used as CO 2 sorbent.The as-prepared sorbents were characterized by N 2 adsorption,FT-IR and SEM techniques.CO 2 capture was tested in a fixed bed reactor using a simulated flue gas containing 15.1% CO 2 in a temperature range of 25-100 C.The effects of sorption temperature and amine content on CO 2 uptake of the adsorbents were investigated.The silica gel with a 30 wt% PEI loading manifested the largest CO 2 uptake of 93.4 mg CO 2 /g adsorbent(equal to 311.3 mg CO 2 /g PEI) among the tested sorbents under the conditions of 15.1%(v/v) CO 2 in N 2 at 75 C and atmospheric pressure.Moreover,it was rather low-cost.In addition,the PEI-impregnated silica gel exhibited stable adsorption-desorption behavior during 5 consecutive test cycles.These results suggest that the PEI-impregnated silica gel is a promising and cost-effective sorbent for CO 2 capture from flue gas and other stationary sources with low CO 2 concentration.  相似文献   

3.
A mesoporous silica MCM-41 with pore size of 29A was synthesized and assessed for its applicability as a sorbent for in-line trapping of volatile organic compounds (VOCs) from air samples. Several commercially available microporous carbon molecular sieves, i.e., Carbosieve SIII, Carboxen 1000, Carboxen 1003, and Carbotrap purchased from Supelco, were employed to form either single sorbent traps or multi-sorbent traps for comparing adsorption properties with those of the silica MCM-41. A standard gas mixture containing more than 50 target compounds with size varying from C(2) to C(12) was adsorbed by these sorbents and the per carbon response of flame ionization detection (FID) for the target compounds was calculated for obtaining the adsorption profiles. While the multi-carbon sorbents show very uniform adsorption ability across the entire carbon range from C(3) to C(12), the mesoporous silica MCM-41, however, shows little sorption for smaller molecules from C(3) to C(7), but exhibit comparable sorption ability for C(8)-C(12) compounds. Desorption at various temperatures indicates that C(8)-C(12) compounds once trapped can be easily released at moderate temperatures of about 150 degrees C, whereas for carbon sorbents the desorption temperatures for sufficient recovery need to go beyond 300 degrees C due to much tighter hold-up in the microporous structure. Sorption ability for MCM-41 is also reflected on linearity. Compounds with sufficient sorption as suggested by the adequate per carbon response also exhibit excellent precision and linearity with R(2) close to unity, an important requirement for quantitative analysis of ambient VOCs.  相似文献   

4.
以NaY分子筛为载体,CuCl2为铜源,加入还原剂葡萄糖,在温和条件下制备CuCl/NaY吸附剂,通过变压吸附考察了该吸附剂对CO的吸附性能及CO/H2的分离性能。运用X射线衍射(XRD)、X射线光电子能谱(XPS)及程序升温还原(TPR)对吸附剂进行表征,结果表明采用葡萄糖还原法制备CuCl/NaY吸附剂,其制备条件温和,吸附剂表面的亚铜含量高,对CO的吸附及CO/H2的分离性能优越且稳定性好。  相似文献   

5.
New restricted access materials based on microporous hypercrosslinked polystyrene have been developed. The materials are aimed to use as packings for solid‐phase extraction cartridges to isolate low‐molecular‐weight analytes from biological fluids (for instance, blood plasma or serum). Two features distinguish these polymers from all known restricted access materials. The first one consists of the microporous hypercrosslinked polystyrene that not only exclude proteins from the sorbent phase but also do not adsorb them on the bead outer surface, and so they do not cause coagulation of blood protein components. Therefore, these materials do not require any chemical modification. The second distinguishing feature is the ability of hypercrosslinked sorbents to take up a wide variety of polar and nonpolar organic compounds. The sorbents were obtained in the form of beads of 60–70 μm in diameter by cross‐linking styrene copolymers with 1, 2, and 3% divinylbenzene with monochlorodimethyl ether to 100, 150, and 200% cross‐linking degree. The sorbents exhibit all typical properties of hypercrosslinked networks. They do not take up albumin, the major blood protein, and cytochrome C, representative of smaller protein molecules, but are capable of adsorbing drugs, vitamins, and phenyl carboxylic acids (markers of sepsis) from model aqueous solutions.  相似文献   

6.
Fe- and Mn-promoted H(2)S sorbents Fe(x)-Mn(y)-Zn(1-x-y)O/SiO(2) (x, y = 0, 0.025) for desulfurization of model fuel reformates at room temperature were prepared, tested and characterized. Sulfur uptake capacity at 25 °C significantly exceeds that of both commercial unsupported ZnO sorbents and un-promoted supported ZnO/SiO(2) sorbents. Sulfur capacity and breakthrough characteristics remain satisfactory after multiple (~10) cycles of adsorption/regeneration, with regeneration performed by a simple and robust heating in air. XRD shows that both "calcined" and "spent" sorbents contain nano-dispersed ZnO, and XPS confirms conversion of ZnO to ZnS. "Calcined" sorbent contains Fe(3+) and Mn(3+) that are reduced to Mn(2+) upon reaction with H(2)S, but not with H(2). Operando ESR is used for the first time to study dynamics of reduction of Mn(3+) promoter sites simultaneously with measuring sulfidation dynamics of the Fe(x)-Mn(y)-Zn(1-x-y)O/SiO(2) sorbent. Fe cations are believed to occupy the surface of supported ZnO nanocrystallites, while Mn cations are distributed within ZnO.  相似文献   

7.
以葡萄糖酸钙与葡萄糖酸镁及L-乳酸铝为前驱物,湿法制得了四种CaO/MgO和CaO/Ca9Al6O18吸收剂,并进行了同时捕集CO2/SO2的实验。考察了吸收剂种类、质量配比、SO2浓度及煅烧温度等对吸收剂吸收性能的影响。结果表明,CaO/MgO(质量比为75%/25%)吸收剂和CaO/Ca9Al6O18(质量比为75%/25%)吸收剂分别保持了最好的吸收CO2能力和最好的循环稳定性。SO2严重阻碍了吸收剂对CO2的捕集。SO2浓度越高,吸收剂吸收CO2能力下降的越快,但同时吸收SO2的转化率也越高。数次循环后,总的Ca利用率开始上升,且SO2浓度越高,上升趋势越明显。煅烧温度对CaO/MgO吸收剂和CaO/Ca9Al6O18吸收剂循环吸收特性的影响略有不同。  相似文献   

8.
价格低廉的CaO材料在高温下能高效吸附捕集CO2气体,被认为是碳减排的有效方法之一.然而,CaO长时间循环碳酸化/煅烧解吸后,其CO2的化学吸附容量下降,稳定性较差,限制了该材料的工业应用.本文采用天然钙源(牡蛎壳和方解石等)和化学试剂(醋酸钙)为钙基前驱材料制备CaO.采用扫描电子显微镜(SEM),X射线衍射仪(XRD)和氮气吸附仪等手段对制备的CaO材料进行形貌和物理结构的分析表征;在高温和模拟的烟道气氛条件下(10%C02和90%N2),采用热重分析仪测量CaO吸附CO2的能力和长时间循环碳酸化/煅烧解吸后的稳定性.我们经过与目前所报道的其他钙基吸附材料进行比较,并结合钙基前驱材料的市场价格,发现CaO(醋酸钙)的CO2吸附能力和稳定性较为理想,醋酸钙在高温烟气捕碳方面具有非常好的应用前景.  相似文献   

9.
In this paper, a solid molecular basket sorbent, 50 wt% PEI/SBA-15, was studied for CO(2) capture from gas streams with low CO(2) concentration under ambient conditions. The sorbent was able to effectively and selectively capture CO(2) from a gas stream containing 1% CO(2) at 75 °C, with a breakthrough and saturation capacity of 63.1 and 66.7 mg g(-1), respectively, and a selectivity of 14 for CO(2)/CO and 185 for CO(2)/Ar. The sorption performance of the sorbent was influenced greatly by the operating temperature. The CO(2)-TPD study showed that the sorbent could be regenerated under mild conditions (50-110 °C) and was stable in the cyclic operations for at least 20 cycles. Furthermore, the possibility for CO(2) capture from air using the PEI/SBA-15 sorbent was studied by FTIR and proved by TPD. A capacity of 22.5 mg g(-1) was attained at 75 °C via a TPD method using a simulated air with 400 ppmv CO(2) in N(2).  相似文献   

10.
A new chelating sorbent for metal ions was prepared by modification of chemically modified silica – LiChroprep-NH2 with Calcon. The molecular mechanism of binding this reagent to the surface of the applied carrier is presented. The properties of this sorbent were compared to analogous sorbents with a plain silica carrier and chemically modified silicas – LiChroprep-RP containing Calcon. The advantages of the new sorbent compared to the silica and LiChroprep-RP chelating sorbents are demonstrated. The sorbent obtained was applied as stationary phase in solid-phase extraction (SPE) for separations of some chosen mixtures of metal ions and for additional purification of aqueous solutions of salts of alkali metals from trace amounts of heavy metals. The multiple use of the sorbent based on LiChroprep-NH2 in sorption-desorption processes of metal ions without deterioration of its sorption capacity is demonstrated.  相似文献   

11.
The sorption characteristics of naphthenic acids (NAs) in their anion form with β-cyclodextrin (β-CD) based polyurethanes, as sorbents, from aqueous solutions that simulate the conditions of oil sands process water (OSPW) are presented. The copolymer sorbents were synthesized at various β-CD:diisocyanate monomer mole ratios (e.g., 1:1, 1:2, and 1:3) with diisocyanates of variable molecular size and degree of unsaturation. The equilibrium sorption properties of the copolymer sorbents were characterized using sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry to monitor the equilibrium unbound fraction of anionic NAs in the aqueous phase. The copolymer sorbents were characterized in the solid state using (13)C CP-MAS NMR spectroscopy, IR spectroscopy and elemental analysis. The sorption results of the copolymer sorbents with anion forms of NAs in solution were compared with a commercially available carbonaceous standard: granular activated carbon (GAC). The monolayer sorption capacities of the sorbents (Q(m)) were obtained from either the Langmuir or the Sips isotherm model used to characterize the sorption characteristics of each copolymer sorbent. The estimated sorption capacity for GAC was 142 mg NAs per g sorbent whereas the polymeric materials ranged from 0-75 mg NAs per g sorbent over the experimental conditions investigated. In general, significant differences in the sorption capacities between GAC and the copolymer sorbents were related to the differences in the accessible surface areas and pore structure characteristics of the sorbents. The Sips parameter (K(eq)) for GAC and the copolymer materials reveal differences in the relative binding affinity of NAs to the sorbent framework in accordance with the synthetic ratios and the value of Q(m). The diisocyanate linker plays a secondary role in the sorption mechanism, whereas the β-CD macrocycle in the copolymer framework is the main sorption site for NAs because of the formation of inclusion complexes with β-CD.  相似文献   

12.
In this work, a computational study is performed to evaluate the adsorption-based separation of CO(2) from flue gas (mixtures of CO(2) and N(2)) and natural gas (mixtures of CO(2) and CH(4)) using microporous metal organic framework Cu-TDPAT as a sorbent material. The results show that electrostatic interactions can greatly enhance the separation efficiency of this MOF for gas mixtures of different components. Furthermore, the study also suggests that Cu-TDPAT is a promising material for the separation of CO(2) from N(2) and CH(4), and its macroscopic separation behavior can be elucidated on a molecular level to give insight into the underlying mechanisms. On the basis of the single-component CO(2), N(2), and CH(4) isotherms, binary mixture adsorption (CO(2)/N(2) and CO(2)/CH(4)) and ternary mixture adsorption (CO(2)/N(2)/CH(4)) were predicted using the ideal adsorbed solution theory (IAST). The effect of H(2)O vapor on the CO(2) adsorption selectivity and capacity was also examined. The applicability of IAST to this system was validated by performing GCMC simulations for both single-component and mixture adsorption processes.  相似文献   

13.
A series of four isostructural microporous coordination polymers (MCPs) differing in metal composition is demonstrated to exhibit exceptional uptake of CO2 at low pressures and ambient temperature. These conditions are particularly relevant for capture of flue gas from coal-fired power plants. A magnesium-based material is presented that is the highest surface area magnesium MCP yet reported and displays ultrahigh affinity based on heat of adsorption for CO2. This study demonstrates that physisorptive materials can achieve affinities and capacities competitive with amine sorbents while greatly reducing the energy cost associated with regeneration.  相似文献   

14.
The on-line solid phase extraction of trace amount of lead in flow-injection system with flame AAS detection was investigated using cellulose sorbents with phosphonic acid and carboxymethyl groups, C(18) sorbent non-modified and modified with Pyrocatechol Violet or 8-quinolinol, commercial chelating sorbents Chelex 100 and Spheron Oxin 1000, non-polar sorbent Amberlite XAD-2 modified with Pyrocatechol Violet and several cation-exchange resins. The best dynamic characteristics of retention were observed for functionalized cellulose sorbents. For Cellex P assumed as optimum sorbent, elution with a separate fractions of nitric acid and ethanol allows the differentiation between tetraalkyllead and sum of inorganic lead and organolead species of smaller number of alkyl groups. The detection limit for the determination of inorganic Pb(II) was estimated as 0.17 microg/l. at preconcentration from 50 ml sample at a flow rate of 7 ml/min.  相似文献   

15.
吸收增强式甲烷水蒸气重整制氢实验研究   总被引:3,自引:1,他引:2  
利用固定床反应器对吸收增强式甲烷水蒸气重整制氢反应进行了考察,研究了温度、甲烷流量、颗粒粒径和吸收剂种类等参数对反应过程的影响。结果表明,吸收增强式制氢反应过程最佳反应温度受热力学和动力学两方面因素影响;常压下以CaO为吸收剂时,最佳反应温度为600℃~700℃;CH4流量的选取要根据反应器内吸收剂的量与吸收增强段持续时间综合比较而定; 颗粒粒径大于90 μm,分析纯CaO和新型钙基CO2吸收剂CaO/Ca12Al14O33 均能达到较好的吸收增强效果。  相似文献   

16.
This paper presents the preparation of a porous (Mg, Ca) silicate structure, which could be employed as sorbent filter media. The sorbents have been prepared using sodium silicate precipitated with various ratios of magnesium and calcium salts. The sorbents obtained were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen physisorption isotherm. Further, the applicability and performance of the sorbent impregnate with potassium hydroxide for removal of sulphur dioxide (SO2) has been demonstrated. From the isotherms, specific surface area, pore diameter and volume of pores were estimated. Results show that the chemical composition and textural properties of the resultant sorbents were highly dependent on Mg/Ca molar ratio. It was found that sorbents made with 68 mol% Mg and 32 mol% Ca (PSS-MgCa-68/32); and 75 mol% Mg and 25 mol% Ca (PSS-MgCa-75/25) exhibited even higher specific surface area and pore volume than the sorbents containing a single metal. The Mg/Ca-silica sorbents obtained contains interconnected bimodal porosity with large portions being mesopores of varied sizes. The pore size distribution (PSD) results further indicate that PSS-MgCa-68/32 sorbent exhibits wide PSD of interconnected pores in the size range of 1 to 32 nm while PSS-MgCa-50/50 and PSS-MgCa-75/25 exhibits narrow PSD of 1 to 5 nm. Using SO2 as model contaminate gas, it was shown that the dynamic adsorption performance of the PSS-MgCa-sorbents impregnated with 8 wt% KOH exhibits SO2 uptake, with impregnated PSS-MgCa-68/32 showing better performance. This shows that the materials prepared can be used as adsorbent for gas filtration.  相似文献   

17.
K. G. Furton  Q. Lin 《Chromatographia》1992,34(3-4):185-187
Summary The effect of extraction cell dimensions (i.d.: length) on supercritical fluid extraction (SFE) efficiencies of polychlorinated biphenyls (PCBs) is shown to be dependent on the type of sorbent used. For octadecylsilane (C18) sorbents, there is a significant increase in observed SFE recoveries of PCBs when the cell dimensions are made more broad (increased i.d.: length); whereas, no effect of cell geometry is observed when the common adsorbent, Florisil, is utilized. Additionally, recoveries decreased in proportion to the chlorine number, for the PCBs studied, for octadecylsilane sorbents, while no such effect was observed for Florisil. These results illustrate the magnitude of the matrix effect in SFE, which generally dominated observed recoveries, even in the simplest analyte/sorbent systems such as the one studied here.  相似文献   

18.
Synthesis and characterization of polymeric matrices for molecular recognition of pesticides are presented. For their preparation, methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a cross‐linking agent were used. As template molecules, diazinon and bifenthrin were applied. Syntheses were carried out in the presence of different porogens. Chemical structures were studied using FTIR‐ATR, elemental analysis, and alkacymetric titration, morphology by laser diffraction particle size analyzer and by particle size, and shape analyzer based on image analysis, whereas porous structure by nitrogen adsorption/desorption method. To study selectivity of the sorbent toward template molecule, breakthrough volumes and sorption kinetics for molecularly imprinted polymers and nonimprinted analogues were determined. Particle sizes of the studied sorbents (expressed as CE diameter) were in the range 40 to 44 μm (except sorbent obtained in the presence of hexane). The chemical composition of all obtained sorbents was close to theoretical one (60.13% C, 7.11% H, 32.77% O). The values of specific surface area of the sorbents were in the range 2 to 338 m2/g.  相似文献   

19.
High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, respectively. The sorbent preparation process includes high-pressure impregnation, filtration, ovendry and calcination. The aim of this research is to primarily study the effects of the impregnation pressure on physical properties and desulfurization ability of the sorbent. The desulfurization experiment was carried out in a fixed-bed reactor at 500°C and a simulated coal gas used in this work was composed of CO (33 vol%), H2 (39 vol%), H2S (300 ppm in volume), and N2 (balance). Experimental results show that the pore structure of the SC support can be improved effectively and ZnO active component can be uniformly dispersed on the support, with the small particle size of 10-500 nm. Sorbents prepared using high-pressure impregnation have better desulfurization capacity and their active components have higher utilization rate. P20-ZnSC sorbent, obtained by high-pressure impregnation at 20 atm, has the best desulfurization ability with a sulfur capacity of 7.54 g S/100g sorbent and a breakthrough time of 44 h. Its desulfurization precision and efficiency of removing H2S from the middle temperature gases can reach <1 ppm and >99.7%, respectively, before sorbent breakthrough.  相似文献   

20.
A porous silica of nominal 5 microns particle diameter and 30 nm pore size (Nucleosil 300-5) and a non-porous silica of nominal 1.5 microns particle diameter were activated with 3-mercaptopropyltriethoxysilane (MPTS), followed by the immobilization of the triazine dye, Cibacron Blue F3GA. Various biomimetic dye sorbents with graduated ligand densities between 1 mumol/m2 and 0.01 mumol/m2 were prepared. The capacities and the association constants associated with the binding of lysozyme to these sorbents were determined by frontal analysis experiments [J. Chromatogr., 476 (1989) 205-225]. Due to the ability of the Cibacron Blue F3GA-modified silicas to act as mixed mode coulombic and hydrophobic interaction sorbents and the highly charged nature of the surface structure of lysozyme (pl 11), two mobile phase conditions were examined. In one case a 0.1 M phosphate buffer, pH 7.8, was used as the equilibration and loading buffer, in the second case 1 M sodium chloride-0.1 M phosphate buffer, pH 7.8 was employed as the equilibration and loading buffer to monitor the influence of ionic interactions. The elution was performed in each case with a 2.5 M potassium thiocyanate solution. With the porous silica dye sorbents and 1 M NaCl present in the loading buffer, the highest capacity was achieved when Cibacron Blue F3GA was immobilised to the level of 0.1 mumol/m2. In the case of the non-porous silica dye sorbents, the maximum protein capacity was achieved when 0.5 mumol/m2 dye were immobilised onto the support. Evaluation of the frontal breakthrough curves confirmed that the kinetics of adsorption of lysozyme onto the non-porous sorbent were substantially faster than the adsorption of lysozyme onto the porous sorbent due to the absence of pore diffusion effects in case of the non-porous support. Furthermore, the adsorption of lysozyme on both sorbents was faster when no salt was added to the loading buffer, indicating that there is either conformational or reorientation effects operating during the specific binding of the protein to the dye ligand, or that the interaction is proceeding through the participation of a second class of binding sites. The magnitude of the association constants, Ka, for the lysozyme-Cibacron Blue F3GA systems were found to be dependent on the ligand density of the sorbent. With decreasing ligand density, the protein-ligand interaction became stronger, e.g. Ka values became larger. These results confirm earlier observations on the effect of ligand steric compression on the affinate-ligand association constant, e.g. the protein needs sufficient space to interact with the ligand in an optimum way.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号