首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We propose a semiclassical theory of dc magnetotransport in a two-dimensional electron gas modulated along one direction with weak electrostatic modulations. We show that oscillations of the magnetoresistivity ρ corresponding to the current driven along the modulation lines observed at moderately low magnetic fields can be explained as commensurability oscillations.  相似文献   

2.
Godfrey Gumbs 《Physics letters. A》2009,373(30):2506-2515
We investigate the effects of spin-orbit interaction (SOI) and plane-perpendicular magnetic field on the conductivity of a two-dimensional electron system in the presence of one-dimensional electrostatic modulation. The calculations are performed when a low-intensity, low-frequency external electric field is applied. The Kubo formula for the conductivity is employed in the calculation. The single-particle eigenstates which depend on the strengths of the magnetic field, the SOI and modulation potential, are calculated and then used to determine the conductivity. We present numerical results for the conductivity along the channels as well as the tunneling conductivity perpendicular to the constrictions as functions of the modulation potential, the SOI and the magnetic field. We demonstrate that the effect of finite frequency is to related to the reduction of both the longitudinal and transverse conductivities.  相似文献   

3.
Edge spin currents existing in two-dimensional electron gas near the boundary between the regions with spin-orbit interaction and without it are st udied for nonequilibrium conditions due to an electron current flowing parallel or normal to the boundary. The parallel current generates an edge spin density, whereas the normal one changes the edge spin current by a value proportional to the particle current.  相似文献   

4.
We consider a two-dimensional electron gas (2DEG) with the Rashba spin-orbit interaction (SOI) in the presence of a perpendicular magnetic field. We derive analytical expressions of the density of states (DOS) of a 2DEG with the Rashba SOI in the presence of a magnetic field by using the Green's function technique. The DOS allows us to obtain the analytical expressions of the magnetoconductivities for spin-up and spin-down electrons. The conductivities for spin-up and spin-down electrons oscillate with different frequencies and give rise to the beating patterns in the amplitude of the Shubnikov-de Haas (SdH) oscillations. We find a simple equation which determines the zero-field spin splitting energy if the magnetic field corresponding to any beat node is known from the experiment. Our analytical results reproduce well the experimentally observed non-periodic beating patterns, number of oscillations between two successive nodes and the measured zero-field spin splitting energy.  相似文献   

5.
The results of an investigation of the width of the electron and hole spectral functions in an isotropic electron gas with the Rashba spin-orbit interaction as a function of the wave vector within the G 0 W 0 approximation are reported. This kind of electron gas is used to simulate two-dimensional systems formed by electrons in In x Ga1 − x As layers of various heterostructures and by surface electron states on Au(111). It is demonstrated how the width of the spectral function changes as a result of the spin-orbit interaction and how it depends on the branch index of the energy spectrum split by this interaction.  相似文献   

6.
We discuss the mechanism of the anomalous Hall effect in a Rashba-Dresselhaus two-dimensional electron gas subjected to a homogeneous out-of-plane magnetization. On the basis of a systematic treatment of the kinetic equations for the spin-density matrix, results are derived for the dynamic Hall conductivity in a closed form. Its nonanalytic dependence on both the scattering time and the frequency of the applied electric field is discussed. Except for in a special Rashba-Dresselhaus model, there is a finite intrinsic anomalous Hall effect, which is extremely sensitive to short-range elastic scattering.  相似文献   

7.
The interplay of electron-electron interactions and spin-orbit coupling leads to a new contribution to the homogeneous optical conductivity of the electron liquid. The latter is known to be insensitive to many-body effects for a conventional electron system with parabolic dispersion. The parabolic spectrum has its origin in the Galilean invariance which is broken by spin-orbit coupling. This opens up a possibility for the optical conductivity to probe electron-electron interactions. We analyze the interplay of interactions and spin-orbit coupling and obtain optical conductivity beyond RPA.  相似文献   

8.
We theoretically studied the spin-dependent charge transport in a two-dimensional electron gas with Dresselhaus spin-orbit coupling (DSOC) and metal junctions. It is shown that the DSOC energy can be directly measured from the tunneling conductance spectrum. We found that spin polarization of the conductance in the propagation direction can be obtained by injecting from the DSOC system. We also considered the effect of the interfacial scattering barrier (both spin-flip and non-spin-flip scattering) on the overall conductance and the spin polarization of the conductance. It is found that the increase of spin-flip scattering can enhance the conductance under certain conditions. Moreover, both types of scattering can increase the spin polarization below the branches crossing of the energy band.  相似文献   

9.
Magnetotransport measurements are carried out on the AlGaN/AlN/GaN in an SiC heterostructure, which demonstrates the existence of the high-quality two-dimensional electron gas (2DGE) at the AlN/GaN interface. While the carrier concentration reaches 1.32 × 1013 cm - 2 and stays relatively unchanged with the decreasing temperature, the mobility of the 2DEG increases to 1.21 × 104 cm2/(V·s) at 2 K. The Shubnikov—de Haas (SdH) oscillations are observed in a magnetic field as low as 2.5 T at 2 K. By the measurements and the analyses of the temperature-dependent SdH oscillations, the effective mass of the 2DEG is determined. The ratio of the transport lifetime to the quantum scattering time is 9 in our sample, indicating that small-angle scattering is predominant.  相似文献   

10.
11.
An explicit analytic expression is derived for the magnetic moment of a 2D electron gas taking into account the spin-orbit interaction in the Rashba model with T = 0. The cases of constant chemical potential and number of electrons are investigated. The magnetic field and temperature dependences of the magnetic moment are analyzed. The results are compared with the results of experimental studies of magnetization.  相似文献   

12.
Quantum mechanical calculations of the magnetotransport coefficients of a modulated two-dimensional electron gas in a perpendicular magnetic field are presented using the Kubo method. The model modulation potential used is such that the effect of the steepness of the potential and its strength on the band part of the longitudinal resistivity ρxxand the Hall resistivity ρxycould be studied. In the extreme limit of a very steep potential, a two-dimensional square array of antidots is simulated. Impurity scattering is included in the self-consistent t-matrix approximation. The results show that for a strong lateral superlattice potential, ρxyis quenched in the low magnetic field regime and as the magnetic field increases there is a large negative Hall resistivity. The intensity of this negative peak is suppressed as the strength of the modulation potential is decreased. It is also shown that the height of the negative peak depends on the steepness of the potential. The longitudinal resistivity also has some interesting features. There are Aharonov–Bohm oscillations and a double peak structure which depends on both the strength of the modulation potential as well as its slope. The numerical results show that the position and intensity of the lower peak is not very sensitive to a change in the strength of the lattice potential or its steepness. However, the upper peak is greatly reduced when the lattice potential is diminished in strength. The double peak feature in ρxxand the negative peak and quenching of the Hall effect at low magnetic fields have been observed experimentally for antidots in both the quasiclassical and quantum regimes.  相似文献   

13.
The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.  相似文献   

14.
15.
Low-frequency magnetoplasmon modes in a one-dimensional lateral superlattice with Rashba spin-orbit splitting are considered. Such modes correspond to oscillations related to virtual transitions within a Landau level that become possible due to the broadening of each Landau level into a band produced by the superlattice potential. The specificity of the one-dimensional intersubband plasmons emerging in such a system has been revealed.  相似文献   

16.
17.
18.
Using the time-dependent Schrödinger equation, we present the analytical result of the expectation value of spin injected into a two-dimensional electron gas with respect to an arbitrarily spin-polarized electron state and monitor the spin time-evolution. We demonstrate that the expectation value of spin operator Sx is the time-independent, and only the expectation values in the Sy-Sz plane are time-dependent. A detailed study of spin precession in the spin-valve and spin-transistor geometry is presented, in which the initial spin-polarized electron state point perpendicular and parallel to the current direction, respectively. We put forward the possible reason that the resistance change is independent of gate voltage in the spin-valve geometry. Furthermore, it has been shown that the effective magnetic field generated by the spin-orbit interaction is not same with the truly magnetic field. The main effect of the truly magnetic field is to align the spin along the field direction, but the effective magnetic field generated by the spin-orbit interaction does not.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号