首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This paper aims to provide a systematic discussion based on our experimental results both previously published and unpublished, to promote better understanding of volume-phase transitions in polyelectrolyte gels. Special attention was paid to the distribution of network charges as well as to the attractive interaction among polymer segments. From looking at how these effects appear in the swelling curves, an exploration of the nature of polyelectrolyte gel transitions was attempted. Two sorts of polyelectrolyte gels, temperature-responsive ionic gels based on N-isopropylacrylamide (NIPA) and cationic poly(ethyleneimine) (PEI) gels, were mainly employed with various modifications. The charge inhomogeneity within the gel phase was created by surfactant binding, immobilized enzyme reaction and physical entrapment of polyions. The attractive interactions holding the gel in a collapsed state were studied in comparison with phase separations of the corresponding linear polyelectrolyte. The main conclusions are summarized as follows: (i) The charge inhomogeneity exhibits a large influence on the volume transition in ionic gels. (ii) Hydrogen bonding and hydrophobic association, other than electrostatic attraction, can be considered to play an important role in the segmental association. (iii) Stably associated segments via one or more of these attractive interactions causes a large hysteresis in the swelling process, in which the repulsive interaction among the fixed charges on the network is dominant as shown in the Katchalsky's model. (iv) A distribution of "neutral but hydrophilic" moieties (e.g., ion pair or salt-linkage formed between the opposite charged groups) within the gel shows a marked effect on the temperature-induced volume collapse, the aspect of which is similar to that observed in the gels with a charge inhomogeneity.  相似文献   

2.
The volume and structural changes upon replacement of oppositely charged network counterions for oppositely charged macroions in cross-linked polyelectrolyte gels have been investigated by Monte Carlo simulations using a coarse-grained model. Initially, the gel deswells, but after an approximately equivalent amount of macroions, the gel starts to swell again. The deswelling effect is greatest for small and highly charged macroions. The role of different network properties on the deswelling has also been examined. The initial deswelling is understood in terms of a replacement of confined counterions with macroions, thereby reducing the osmotic pressure originating from the counterions. At these conditions, macroions are located near network nodes with various degrees of network chains wrapping them. At charge equivalence, a profound change in the network structure has appeared. At these conditions, the cohesive electrostatic interaction and the excluded volume effect of the macroions strongly influence the equilibrium volume of the gel. Our model system reproduces many characteristic experimental observations of polyelectrolyte gels containing oppositely charged surfactants.  相似文献   

3.
Three actual problems connected with the collapse transition of polyelectrolyte gels in poor solvent are reviewed. (i) The first topic is the appearance of microstructures for polyelectrolyte gels in poor enough solvents. Three reasons for microsegregation are discussed: effect of polyelectrolyte – hydrophobic competition, effect of the formation of multiplets from ionic pairs in the ionomer regime and the effect of partial formation of glassy kinetically frozen polymer rich regions. (ii) Second we analyze the interaction of the gels with polymers which are capable to form complexes with the gel chains. Main experimental results are presented for poly(methacrylic acid) gels interacting with poly(ethylene oxide), (iii) Finally, we consider the problem of interaction of polyelectrolyte gels with the sufactants. The micelle formation of surfactants inside the gel and its consequences for the conformational properties of the gel are discussed in detail.  相似文献   

4.
The swelling behavior of polyelectrolyte gels based on poly(diallyldimethylammonium chloride) (copolymers of diallyldimethylammonium chloride and acrylamide with the variable composition) and poly(methacrylic acid, sodium salt) in the presence of organic water soluble dyes (alizarin, naphthol blue black, rhodamine) was studied. The collapse of the polyelectrolyte gels in the presence of oppositely charged dyes together with the effective absorption of dyes was observed. The shrinking degree and the dye absorption by the gel depend on the charges of the polymer network and the dye, and also on the dye concentration. Stability of the gel–dye complexes in a salt solution of NaCl and Al2(SO4)3 was studied. It was shown that the complex stability in the salt solution depends on the charge density of the polymer chains forming the gel. The increase of charge density of polymer generally leads to the enhancement of the complex stability. For the systems with the fraction of charged poly(diallyldimethylammonium chloride) monomer units above 0.5 the release of alizarin to the external solution of Al2(SO4)3 reservoir is practically completely suppressed. The obtained results show that oppositely charged dyes are generally from stable complexes with polyelectrolyte gels. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1209–1217, 1999  相似文献   

5.
强电解质凝胶的溶胀平衡与体积相变   总被引:5,自引:1,他引:4  
以作者近年来对强电解质凝胶的研究结果为中心,介绍了磺酸基凝胶和丙烯酸基凝胶在纯水,缓冲溶液中溶胀比与电荷密度的关系及其差异,揭示了磺酸基凝胶中的反离子凝聚现象和在有机溶剂中体积相变,还讨论了体积相变的滞后现象及其成因,最后就体积相变的驱动力,统一认识电解质和离聚体以及有关的实验结果阐述了作者的见解。  相似文献   

6.
The salt separations of negatively charged gel-filled membranes composed of poly(2-acrylamido-2-methylpropanesulfonic acid) gels anchored within a polypropylene microporous substrate have been determined experimentally and modeled theoretically. The separation of these membranes were calculated by both the Teorell, Meyer and Sievers (TMS) model and the Donnan–Steric Pore (DSP) model coupled with the extended Nernst–Planck equation. For modeling, the membrane effective thickness, effective charge density, and pore radius were either directly measured or calculated from theories without the use of fitting procedures. Good agreement between the experimental measurements and the theoretical calculations of salt separation was observed. For the theoretical calculations, the TMS model is suitable for membranes with moderate gel polymer volume fractions, while the DSP model is more suitable for membranes with high gel polymer volume fractions. Moreover, with a calculated constant effective charge density, the salt separation with different salt concentrations could be accurately predicted. The separation of various other salts could also be predicted with good accuracy.  相似文献   

7.
When oppositely charged polyelectrolytes are mixed in water, attraction between oppositely charged groups may lead to the formation of polyelectrolyte complexes (associative phase separation, complex coacervation, interpolymer complexes). Theory is presented to describe the electrostatic free energy change when ionizable (annealed) (macro-)molecules form a macroscopic polyelectrolyte complex. The electrostatic free energy includes an electric term as well as a chemical term that is related to the dissociation of the ionic groups in the polymer. An example calculation for complexation of polyacid with polybase uses a cylindrical diffuse double layer model for free polymer in solution and electroneutrality within the complex and calculates the free energy of the system when the polymer is in solution or in a polyelectrolyte complex. Combined with a term for the nonelectrostatic free energy change upon complexation, a theoretical stability diagram is constructed that relates pH, salt concentration, and mixing ratio, which is in qualitative agreement with an experimental diagram obtained by Bungenberg de Jong (1949) for complex coacervation of arabic gum and gelatin. The theory furthermore explains the increased tendency toward phase separation when the polymer becomes more strongly charged and suggests that complexation of polyacid or polybase with zwitterionic polymer (e.g., protein) of the same charge sign (at the "wrong side" of the iso-electric point) may be due (in part) to an induced charge reversal of the protein.  相似文献   

8.
Thermodynamic quantities of a polyelectroyte immersed in salt solution are derived modeling the polyelectrolyte by a sequence of charged parallel flat plates. The starting point for the analysis is the derivation of the Gibbs free enthalpy in its canonic variables pressure (p) and temperature (T), i.e., as a thermodynamic potential. From this, further thermodynamic quantities such as Helmoltz free energy, entropy, internal energy, compressibility, isobar and isochor heat capacities, and expansive force are derived in analytical expressions by differentiation. All these formulas contain the parameter plate surface charge density (sigma) that provides a measure of the discontinuity of the polymer charge distribution that can be used to fit the theory to experimental data. Thermodynamic quantities are also known from the classical Donnan equilibrium that treats the polyelectroyte charge network as a charge continuum. A limiting process is used to perform the transition from the laminar Poisson- Boltzmann model to the continuous Donnan equilibrium. In general, the expressions of the Donnan system are recovered for plate charge density sigma-->0, number of plates Z-->infinity, and sigma Z=constant. Copyright 2000 Academic Press.  相似文献   

9.
In this work, thermo-responsive polyelectrolyte gels have been simulated using polymer networks of diamond-like topology in the framework of the primitive model. Monte Carlo simulations were performed in the canonical ensemble and a wide collection of situations has been systematically analysed. Unlike previous studies, our model includes an effective solvent-mediated potential for the hydrophobic interaction between non-bonded polymer beads. This model predicts that the strength of the attractive hydrophobic forces increases with temperature, which plays a key role in the explanation of the thermo-shrinking behaviour of many real gels. Although this hydrophobic model is simple (and it could overestimate the interactions at high temperature), our simulation results qualitatively reproduce several features of the swelling behaviour of real gels and microgels reported by experimentalists. This agreement suggests that the effective solvent-mediated polymer-polymer interaction used here is a good candidate for hydrophobic interaction. In addition, our work shows that the functional form of the hydrophobic interaction has a profound influence on the swelling behaviour of polyelectrolyte gels. In particular, systems with weak hydrophobic forces exhibit discontinuous volume changes, whereas gels with strong hydrophobic forces do not show hallmarks of phase transitions, even for highly charged polyelectrolyte chains.  相似文献   

10.
The present work is devoted to the study of the complex formation of polymer gel with organic dye and their properties in the aqueous salt solutions. Two systems were studied: 1) polyelectrolyte gel based on poly(diallyldimethylammonium chloride) and water soluble oppositely charged organic dyes (alizarin red S and catechol violet) and 2) organogel based on poly(N-vinylcaprolactam) and dithizone. The collapse of the polyelectrolyte gels in the presence of oppositely charged dyes together with the effective absorption of dyes was observed. The shrinking degree and the dye absorption by the gel depends on the dye concentration. In the case of PVCa gel in organic media the dye absorption takes place. The main attention has been concentrated on the study of the behaviour of gel/dye complex immersed in the salt solution if dye is the chelating ligand for metal ions. It was shown that polyelectrolyte gels generally form stable complexes with oppositely charged dyes. The behaviour of PVCa-dithizone-chloroform system was studied in AgNO3 aqueous solution. The release of dithizone to the external aqueous solution of AgNO3 reservoir is completely suppressed. Absorption spectra of gel/dye and gel/dye/metal ion systems were studied. It was shown that metal ions penetrate inside the gel phase and the dye/metal ion complexes form within the gel. The dependence of the optical density for the systems of gel/dye/metal ion on the salt concentration is observed.  相似文献   

11.
The gelation of mixed cationic/anionic surfactant vesicles of sodium dodecyl sulfate/didodecyldimethylammonium bromide and sodium dodecylbenzenesulfonate/cetyltrimethylammonium tosylate by hydrophobically modified sodium polyacrylate is studied rheologically. When the vesicles are cationically charged, mixtures with this anionic polyelectrolyte form precipitates. When the vesicles are anionically charged, however, these mixtures display a progression from a Maxwell fluid to a critical gel to a solidlike gel with increasing vesicle and/or polyelectrolyte concentration. Consideration of the viscous behavior with increasing vesicle and polymer volume fraction indicates that the gel network is formed by the bridging of the hydrophobically modified polymer between vesicles. The similarity between the gelation results for the two anionic systems suggests the results can be generalized to other similarly charged mixtures.  相似文献   

12.
Viscometric and conductometric measurements have been performed on dilute, salt free solutions of poly(vinyl alcohol) (PVA) and poly(vinyl alcohol, vinyl sulphate ester) copolymer salts in order to get information on transition from a neutral to charged macromolecules. With increasing linear charge density from a very low value to a moderate one a non linear dependence of polyelectrolyte effect on copolymer composition was observed. A comparison has shown that there is a close analogy between the expansion of polyanions and swelling of polyelectrolyte networks at comparable linear charge density range. Due to the intra- and inter-molecular mobile ionic bridges a considerable contraction was pointed out by viscometry for barium, magnesium and copper salts. However, the differences in properties of counterions of higher charge number indicates that in addition to the valency, there is a definite chemical effect, too. It has been revealed by the electric conductance measurements that the transition from a neutral to charged macromolecules could be a very complex one calling for a new and more detailed theoretical consideration of polyelectrolyte solutions.  相似文献   

13.
We present model calculations for the interaction of a protein-like inhomogeneously charged nanoscale object with a layer of densely grafted polyelectrolytes ("polyelectrolyte brush"). The motivation of this work is the recent experimental observation that proteins that carry an overall negative charge are absorbed into negatively charged polyelectrolyte brushes. Two-gradient self-consistent field (2G-SCF) calculations have been performed to unravel the physical mechanism of the uptake of protein thus effected. Our results prove that an overall neutral, protein-like object can electrostatically be attracted and therefore spontaneously driven into a polyelectrolyte brush when the object has two faces (patches, domains), one with a permanent positive charge and the other with a permanent negative charge. Using a 2G-SCF analysis, we evaluate the free energy of insertion, such that the electric dipole of the inclusion is oriented parallel to the brush surface. An electroneutral protein-like object is attracted into the brush because the polyelectrolyte brush interacts asymmetrically with the charged patches of opposite sign. At high ionic strength and low charge density on the patches, the attraction cannot compete with the repulsive excluded-volume interaction. However, for low ionic strengths and sufficiently high charge density on the patches, a gain on the order of k(B)T per charge becomes possible. Hence, the asymmetry of interaction for patches of different charges may result in a total attractive force between the protein and the brush. All results obtained herein are in excellent agreement with recent experimental data.  相似文献   

14.
Specific features of the polyelectrolyte behavior of weakly charged common gels and cryogels of copolymers of polyacrylamide and poly(N-isopropylacrylamide) with sodium acrylamido-2-methyl-1-propyl sulfonate are investigated. The cryogels are synthesized in frozen solutions at ?15°C. It is shown that the polyelectrolyte swelling is significantly weaker in the case of cryogels than that in the case of gels synthesized in solutions. For thermosensitive gels with isopropylacrylamide groups, collapse occurs during heating. Charging of a common gel leads to a noticeable (18°C) increase in the transition temperature. For a cryogel, this growth is 3°C. During the interaction with cetylpyridinium chloride, the gel contraction is much more pronounced for common weakly charged gels. At the same time, walls of pores of a collapsed cryogel contain a smaller amount of the solvent. Isotherms of the adsorption of a cationic surfactant by anionic common gels and cryogels differ insignificantly. Model gels synthesized in concentrated acrylamide solutions exhibit very weak polyelectrolyte swelling, similar to that of cryogels. The behavior of cryogels is explained by a very high local concentration of crosslinks due to a strong entanglement of polymer chains.  相似文献   

15.
The theory of collapse of weakly charged polyelectrolyte gels is generalized by taking into account the possibility of counter ion trapping with the formation of ion pairs, which becomes progressively important as the gel shrinks and the dielectric constant of the gel medium decreases. A phenomenon well known in the theory of ionomers, namely the aggregation of ion pairs due to dipole-dipole interactions with the formation of multiplets, is also taken into account. These multiplets act as additional physical cross-links. It is shown that accounting for the two effects mentioned above generally leads to an increase of the region of stability of the collapsed phase and to an increase of the jump in volume at the transition point. The most important, qualitatively new effect is the possibility of existence of a new supercollapsed state of a polymer gel which is very close to the densely packed dry gel. The reason for the thermodynamic stability of the supercollapsed state is a loop of positive feedback: the decrease of the volume of the gel leads to a decrease of the dielectric constant and hence to progressive formation of ion pairs, thus the concentration of mobile counter ions and the corresponding osmotic pressure decrease, the gel shrinks further etc. It is possible to realize the phase transitions between all three states of a polymer gel: swollen, ordinary collapsed and supercollapsed.  相似文献   

16.
Investigations dealing with fundamental aspects of the interaction between covalently cross-linked polyelectrolyte gels and oppositely charged surfactants are reviewed. For reference, a brief summary of results from recent studies of associative phase separation in linear polyelectrolyte/surfactant mixtures is also included. It is found that great progress has been made in several sub-areas since the first reports appeared in the early 1990's. The frequently observed surfactant-induced volume transition has been studied in detail. Its relation to associative phase separation in solutions and the important role of polyion-mediated micelle–micelle attractions have been clarified. Phase separation in gels, in particular core/shell structures, has been studied in great detail. The importance of network mediated elastic forces between two phases coexisting in the same gel has been demonstrated and some of their consequences have been clarified. Hydrophobic interactions between polyion and micelle have been found to have strong effects on both binding and swelling isotherms. The effect of salt, which has been found to sometimes disfavor, sometimes promote surfactant binding, is quite well understood. The microstructure of gels in the collapsed state has been studied in great detail and is often found to be highly ordered, resembling liquid crystalline phases common to surfactant/water systems. The kinetics of surfactant binding and the associated volume change has been investigated to some extent. Progress has been made for gels displaying phase separation during the volume transition.  相似文献   

17.
Polyelectrolyte gels are charged polymer networks with macro-ions fixed on the polymer chains. In the present paper, the fundamental aspects, properties and application of negatively charged polyelectrolyte gels are reviewed, focusing on the interaction between polyelectrolyte gels and proteins, the surface friction and mechanical strength of polyelectrolyte gels. These characteristic properties of polyelectrolyte gels have considerable potential for practical application, such as soft scaffold of cells, construction of biomimetic actuator and replacement of biological tissues.  相似文献   

18.
The swelling behavior in the solutions of sodium chloride, linear polyelectrolytes and ionic surfactants of the composites based on clay mineral bentonite (BENT) embedded in neutral and slightly charged poly(acrylamide) (PAAm) gels is studied. Negatively charged flat clay particles incorporated into polymer gel adsorb oppositely charged surfactant and linear polyelectrolyte and attract the charged chains of cationic polymer matrix. The results of SAXS study manifest the formation of lamella structure of the cationic surfactant adsorbed by the clay plates. The gels loaded with the clay show a strong response to changes in the nature and the composition of the ionic environment.  相似文献   

19.
We describe the results of theoretical and experimental studies of the regular heterogeneities on a nanometer scale which are formed in the systems containing weakly charged polyelectrolytes due to the competition of ionic and hydrophobic interactions. In particular, we consider the effect of microphase separation in poor solvent polyelectrolyte solutions and gels and nano-self-assemblies emerging in the complexes of polyelectrolyte gels with oppositely charged surfactants. The practically important application connected with metal nanoparticles formation in regular microstructures in polyelectrolyte systems is considered as well.  相似文献   

20.
Diffusive transport within complex environments is a critical piece of the chemistry occurring in such diverse membrane systems as proton exchange and bilayer lipid membranes. In the present study, fluorescence correlation spectroscopy was used to evaluate diffusive charge transport within a strong polyelectrolyte polymer brush. The fluorescent cation rhodamine-6G was used as a counterion probe molecule, and the strong polyelectrolyte poly(styrene sulfonate) was the polymer brush. Such strong polyelectrolyte brushes show promise for charge storage applications, and thus it is important to understand and tune their transport efficiencies. The polymer brush demonstrated preferential solvation of the probe counterion as compared to solvation by the aqueous solvent phase. Additionally, diffusion within the polymer brush was strongly inhibited, as evidenced by a decrease in diffusion constant of 4 orders of magnitude. It also proved possible to tune the transport characteristics by controlling the solvent pH, and thus the ionic strength of the solvent. The diffusion characteristics within the charged brush system depend on the brush density as well as the effective interaction potential between the probe ions and the brush. In response to changes in ionic strength of the solution, it was found that these two properties act in opposition to each other within this strong polyelectrolyte polymer brush environment. A stochastic random walk model was developed to simulate interaction of a diffusing charged particle with a periodic potential, to show the response of characteristic diffusion times to electrostatic field strengths. The combined results of the experiments and simulations demonstrate that responsive diffusion characteristics in this brush system are dominated by changes in Coulombic interactions rather than changes in brush density. More generally, these results support the use of FCS to evaluate local charge transport properties within polyelectrolyte brush systems, and demonstrate that the technique shows promise in the development of novel polyelectrolyte films for charge storage/transport materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号