首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymptotic solutions of linear systems of ordinary differential equations are employed to discuss the relationship of the solution of a certain “complete” boundary problem.
$$\begin{gathered} \left\{ \begin{gathered} {\text{ }}\frac{{d{\text{ }}x_1 }}{{d{\text{ }}t}} = A_{11} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{1p} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ \varepsilon ^{h_2 } \frac{{d{\text{ }}x_2 }}{{d{\text{ }}t}} = A_{21} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{2p} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ {\text{ }} \vdots {\text{ }} \vdots {\text{ }} \vdots \hfill \\ \varepsilon ^{h_p } \frac{{d{\text{ }}x_2 }}{{d{\text{ }}t}} = A_{p1} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{pp} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ \end{gathered} \right\} \hfill \\ {\text{ }}R(\varepsilon ){\text{ }}x(a,{\text{ }}\varepsilon ){\text{ }} + {\text{ }}S(\varepsilon ){\text{ }}x(b,{\text{ }}\varepsilon ) = c(\varepsilon ){\text{ }} \hfill \\ \end{gathered}$$  相似文献   

2.
It is known that the nonlinear system of equations of plane steady isentropic potential gas flow can be linearized and transformed to a single equivalent linear differential equation of second order. For the case of a perfect gas this equation has the form [1]
$$\begin{gathered} \frac{{1 - \tau ^2 }}{{\tau ^2 (1 - \alpha \tau ^2 )}} \frac{{\partial ^2 \Phi }}{{\partial \theta ^2 }} + \frac{{\partial ^2 \Phi }}{{\partial \tau ^2 }} + \frac{{\tau (1 - \tau ^2 )}}{{\tau ^2 (1 - \alpha \tau ^2 )}} \frac{{\partial \Phi }}{{\partial \tau }} = 0, \hfill \\ (\tau = w/c_k , w = \sqrt {u^2 + \upsilon ^2 } , \alpha = (\gamma - 1)/(\gamma + 1); \gamma = c_p /c_\upsilon ). (0.1) \hfill \\ \end{gathered} $$  相似文献   

3.
On the basis of some very plausible assumptions about the response of physical systems to stimuli, such as Boltzmann's superposition principle and the causality principle, Spence showed that the following characteristics obtain for the modulus and compliance functions: (i) They are analytic in the lower half of the complex frequency plane, (ii) they are limited if the frequency tends to infinity, and (iii) the real and imaginary parts are even and odd functions, respectively, of the frequencyω. It can generally be demonstrated that the real and imaginary parts of every function satisfying these three requirements and (iv) without singularities on the real frequency axis, are interrelated by Kramers-Kronig transforms. Similar relations hold between the logarithm of the modulus and the argument of the function. Under certain conditions the Kramers-Kronig relations may be approximated by rather simple equations. For linear viscoelastic materials, for instance, the following approximate relations were obtained for the components of the complex dynamic shear modulus,G * (iω) = G′(ω) + iG″(ω) = G d (ω) expiδ(ω): $$\begin{gathered} G'' (\omega ) \simeq \frac{\pi }{2}\left( {\frac{{dG'(u)}}{{d In u}}} \right)_{u = \omega } , \hfill \\ G' (\omega ) - G'(o) \simeq - \frac{{\omega \pi }}{2}\left( {\frac{{d[G''(u)/u]}}{{d In u}}} \right)_{u = \omega } , \hfill \\ \delta (\omega ) \simeq \frac{\pi }{2}\left( {\frac{{d In G_d (u)}}{{d In u}}} \right)_{u = \omega } . \hfill \\ \end{gathered} $$ The first of these relations was published long ago by Staverman and Schwarzl and is useful over broad frequency ranges, as is the second relation. The last equation is the most general one, and also is better supported by experiment.  相似文献   

4.
The unsteady dynamics of the Stokes flows, where , is shown to verify the vector potential–vorticity ( ) correlation , where the field is the pressure-gradient vector potential defined by . This correlation is analyzed for the Stokes eigenmodes, , subjected to no-slip boundary conditions on any two-dimensional (2D) closed contour or three-dimensional (3D) surface. It is established that an asymptotic linear relationship appears, verified in the core part of the domain, between the vector potential and vorticity, , where is a constant offset field, possibly zero.  相似文献   

5.
On the basis of [1] this note examines nonlinear electromagnetic phenomena in a dense plasma brought about by the variation in its electrical conductivity as the electrical field changes. It is well known that the electrical conductivity depends on the electric field strength due to the following causes. The electrons in moving in the electric field receive energy from the field which may be considerable over the free path length. However it is difficult for this energy to be transferred to the heavy particles. In monatomic gases the energy exchange between electrons and heavy particles comes about basically as a result of elastic collisions. Thus a noticeable difference in electron and ion temperature, determined by the electron energy balance taking radiation losses into account, turns out to be possible even for relatively weak electric fields. In molecular gases, on the other hand, the fundamental energy exchange mechanism is the excitation of the rotational and oscillatory degrees of freedom of the molecules. Thus the electron energy in these gases is dissipated relatively easily, and the electron temperature is not observed to be noticeably higher than the atomic temperature. The concept of the characteristic “plasma field” Ep is introduced in [2], which is determined for an Isotropic plasma by the relation
$$E_R = \sqrt {3kTme^{ - 2\delta } (\omega ^2 + v_0 ^2 )} .$$  相似文献   

6.
We consider as in Parts I and II a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and? ∈ ?3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is a portion of withlength γ 0>0. For all?>0, let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $u_i^\varepsilon g^{i,\varepsilon }$ of the points of the shell, obtained by solving the three-dimensional problem; let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $\zeta _i^\varepsilon$ a i of the points of the middle surfaceS, obtained by solving the two-dimensional model ofW.T. Koiter, which consists in finding $$\zeta ^\varepsilon = \left( {\zeta _i^\varepsilon } \right) \in V_K (\omega ) = \left\{ {\eta = (\eta _\iota ) \in {\rm H}^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \eta _i = \partial _v \eta _3 = 0 on \gamma _0 } \right\}$$ such that $$\begin{gathered} \varepsilon \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta ^\varepsilon )\gamma _{\alpha \beta } (\eta )\sqrt a dy + \frac{{\varepsilon ^3 }}{3} \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta ^\varepsilon )\rho _{\alpha \beta } (\eta )\sqrt a dy \hfill \\ = \mathop \smallint \limits_\omega p^{i,\varepsilon } \eta _i \sqrt a dy for all \eta = (\eta _i ) \in V_K (\omega ), \hfill \\ \end{gathered}$$ where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor ofS, $\gamma _{\alpha \beta }$ (η) and $\rho _{\alpha \beta }$ (η) are the components of the linearized change of metric and change of curvature tensors ofS, and $p^{i,\varepsilon }$ are the components of the resultant of the applied forces. Under the same assumptions as in Part I, we show that the fields $\frac{1}{{2_\varepsilon }}\smallint _{ - \varepsilon }^\varepsilon u_i^\varepsilon g^{i,\varepsilon } dx_3^\varepsilon$ and $\zeta _i^\varepsilon$ a i , both defined on the surfaceS, have the same principal part as? → 0, inH 1 (ω) for the tangential components, and inL 2(ω) for the normal component; under the same assumptions as in Part II, we show that the same fields again have the same principal part as? → 0, inH 1 (ω) for all their components. For “membrane” and “flexural” shells, the two-dimensional model ofW.T. Koiter is therefore justified.  相似文献   

7.
Let v and ω be the velocity and the vorticity of the a suitable weak solution of the 3D Navier–Stokes equations in a space-time domain containing z0=(x0, t0)z_{0}=(x_{0}, t_{0}), and let Qz0,r = Bx0,r ×(t0 -r2, t0)Q_{z_{0},r}= B_{x_{0},r} \times (t_{0} -r^{2}, t_{0}) be a parabolic cylinder in the domain. We show that if either $\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r})$\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r}) with $\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r})$\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r}) with \frac3g + \frac2a £ 2\frac{3}{\gamma} + \frac{2}{\alpha} \leq 2, where Lγ, αx,t denotes the Serrin type of class, then z0 is a regular point for ν. This refines previous local regularity criteria for the suitable weak solutions.  相似文献   

8.
This paper investigates experimentally the development of the viscous sublayer in a two-dimensional incompressible turbulent wall boundary layer under severe pressure gradients. The wall was also moderately heated and the influence of heat transfer on the development of the viscous sublayer was included. A semi-empirical equation for the thickness of the viscous sublayer: $$\delta _s = 11.5\frac{\nu }{{U_\tau }}(0.61\frac{{T_\omega }}{{T_s }})^{1/2}$$ was derived, which holds everywhere except closely near the separation point of the boundary layer. The measurements were made on a flat plate in a test section 1.7 m long and 0.8 m wide. The height and shape of the top surface of the test section could be varied, and thus it was possible to imposed different pressure gradients on the flow. Specially designed fine probes facilitated the measurement of the velocity distribution very close to the wall.  相似文献   

9.
We show that for a fractal soil the soil-water conductivity, K, is given by $$\frac{K}{{K_\varepsilon }} = (\Theta /\varepsilon )^{2D/3 + 2/(3 - D)}$$ where $K_\varepsilon$ is the saturated conductivity, θ the water content, ? its saturated value and D is the fractal dimension obtained from reinterpreting Millington and Quirk's equation for practical values of the porosity ?, as $$D = 2 + 3\frac{{\varepsilon ^{4/3} + (1 - \varepsilon )^{2/3} - 1}}{{2\varepsilon ^{4/3} \ln ,{\text{ }}\varepsilon ^{ - 1} + (1 - \varepsilon )^{2/3} \ln (1 - \varepsilon )^{ - 1} }}$$ .  相似文献   

10.
We study abstract evolution equations with nonlinear damping terms and source terms, including as a particular case a nonlinear wave equation of the type $ \ba{cl} u_{tt}-\Delta u+ b|u_t|^{m-2}u_t=c|u|^{p-2}u, &;(t,x)\in [0,T)\times\Omega,\\[6pt] u(t,x)=0, &;(t,x)\in [0,T)\times\partial \Omega,\\[6pt] u(0,\cdot)=u_0\in H_0^1(\Omega), \quad u_t(0,\cdot)=v_0\in L^2(\Omega),\es&; \ea $ \ba{cl} u_{tt}-\Delta u+ b|u_t|^{m-2}u_t=c|u|^{p-2}u, &;(t,x)\in [0,T)\times\Omega,\\[6pt] u(t,x)=0, &;(t,x)\in [0,T)\times\partial \Omega,\\[6pt] u(0,\cdot)=u_0\in H_0^1(\Omega), \quad u_t(0,\cdot)=v_0\in L^2(\Omega),\es&; \ea where 0 < T £ ¥0\Omega is a bounded regular open subset of \mathbbRn\mathbb{R}^n, n 3 1n\ge 1, b,c > 0b,c>0, p > 2p>2, m > 1m>1. We prove a global nonexistence theorem for positive initial value of the energy when 1 < m < p,    2 < p £ \frac2nn-2. 1-Laplacian operator, q > 1q>1.  相似文献   

11.
12.
We consider as in Part I a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and?l 3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is any portion of withlength γ 0>0. We make an essential geometrical assumption on the middle surfaceS and on the setγ 0, which states that the space of inextensional displacements $$\begin{gathered} V_F (\omega ) = \{ \eta = (\eta _i ) \in H^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \hfill \\ \eta _i = \partial _v \eta _3 = 0 on \gamma _0 ,\gamma _{\alpha \beta } (\eta ) = 0 in \omega \} , \hfill \\ \end{gathered}$$ where $\gamma _{\alpha \beta }$ (η) are the components of the linearized change is metric tensor ofS, contains non-zero functions. This assumption is satisfied in particular ifS is a portion of cylinder and?(γ 0) is contained in a generatrix ofS. We show that, if the applied body force density isO(? 2) with respect to?, the fieldu(?)=(u i (?)), whereu i (?) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, once “scaled” so as to be defined over the fixed domain Ω=ω×]?1, 1[, converges as?→0 inH 1(Ω) to a limitu, which is independent of the transverse variable. Furthermore, the averageζ=1/2ts ?1 1 u dx 3, which belongs to the spaceV F (ω), satisfies the (scaled) two-dimensional equations of a “flexural shell”, viz., $$\frac{1}{3}\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta )\rho _{\alpha \beta } (\eta )\sqrt {a } dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\} \eta _i \sqrt {a } dy$$ for allη=(η i ) ∈V F (ω), where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor of the surfaceS, $$\begin{gathered} \rho _{\alpha \beta } (\eta ) = \partial _{\alpha \beta } \eta _3 - \Gamma _{\alpha \beta }^\sigma \partial _\sigma \eta _3 + b_\beta ^\sigma \left( {\partial _\alpha \eta _\sigma - \Gamma _{\alpha \sigma }^\tau \eta _\tau } \right) \hfill \\ + b_\alpha ^\sigma \left( {\partial _\beta \eta _\sigma - \Gamma _{\beta \sigma }^\tau \eta _\tau } \right) + b_\alpha ^\sigma {\text{|}}_\beta \eta _\sigma - c_{\alpha \beta } \eta _3 \hfill \\ \end{gathered} $$ are the components of the linearized change of curvature tensor ofS, $\Gamma _{\alpha \beta }^\sigma$ are the Christoffel symbols ofS, $b_\alpha ^\beta$ are the mixed components of the curvature tensor ofS, andf i are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “flexural shell” are therefore justified.  相似文献   

13.
This paper presents a numerical solution for wavy laminar film-wise condensation on vertical walls. Integral method is achieved based on the recently developed simple wave equations. Solutions are obtained for ranges of dimensionless groups as follows: $$1.5 \leqslant \left( {Pr = \frac{{^{\mu C} p}}{k}} \right) \leqslant 6.0$$ $$10 \leqslant \left( {G = \frac{{^h fg}}{{^{C_p \Delta T} }}} \right) \leqslant 400$$ $$100 \leqslant \left( {S = \left( {\frac{{\sigma ^2 \rho }}{{g_\rho \mu ^4 }}} \right)^{{1 \mathord{\left/ {\vphantom {1 5}} \right. \kern-\nulldelimiterspace} 5}} } \right) \leqslant 400$$ $$1000 \leqslant \left( {L = \frac{{{\rm H}_t }}{{^\delta cr}}} \right) \leqslant 10000$$ . Such ranges cover the expected situations in industrial applications. It is found that the Reynolds number (Re=hLΔTHt/hfg) is a linear function of L on the log-log plane. It is also relatively insensitive to small variations of Pr at high values of this number. At situations where G less than 200 the Re appears to be dependent on S. Agreement with experimental observation is improved over that obtained from previous analytical theories.  相似文献   

14.
Ref. [1] discussed the existence of positive solutions of quasilinear two-point boundary problems: but it restricts O相似文献   

15.
This paper deals with the rational function approximation of the irrational transfer function G(s) = \fracX(s)E(s) = \frac1[(t0s)2m + 2z(t0s)m + 1]G(s) = \frac{X(s)}{E(s)} = \frac{1}{[(\tau _{0}s)^{2m} + 2\zeta (\tau _{0}s)^{m} + 1]} of the fundamental linear fractional order differential equation (t0)2m\fracd2mx(t)dt2m + 2z(t0)m\fracdmx(t)dtm + x(t) = e(t)(\tau_{0})^{2m}\frac{d^{2m}x(t)}{dt^{2m}} + 2\zeta(\tau_{0})^{m}\frac{d^{m}x(t)}{dt^{m}} + x(t) = e(t), for 0<m<1 and 0<ζ<1. An approximation method by a rational function, in a given frequency band, is presented and the impulse and the step responses of this fractional order system are derived. Illustrative examples are also presented to show the exactitude and the usefulness of the approximation method.  相似文献   

16.
In this paper, we use the parameterization method to construct quasi-periodic solutions of state-dependent delay differential equations. For example
$$\begin{aligned} \left\{ \begin{aligned} \dot{x}(t)&=f(\theta ,x(t),\epsilon x(t-\tau (x(t))))\\ \dot{\theta }(t)&=\omega . \end{aligned} \right. \end{aligned}$$
Under the assumption of exponential dichotomies for the \(\epsilon =0\) case, we use a contraction mapping argument to prove the existence and smoothness of the quasi-periodic solution. Furthermore, the result is given in an a posteriori format. The method is very general and applies also to equations with several delays, distributed delays etc.
  相似文献   

17.
At the clamped edge of a thin plate, the interior transverse deflection ω(x 1, x2) of the mid-plane x 3=0 is required to satisfy the boundary conditions ω=?ω/?n=0. But suppose that the plate is not held fixed at the edge but is supported by being bonded to another elastic body; what now are the boundary conditions which should be applied to the interior solution in the plate? For the case in which the plate and its support are in two-dimensional plane strain, we show that the correct boundary conditions for ω must always have the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakqaabeqaaiaabEhacaqGTaWa% aSaaaeaacaGG0aGaae4vamaaCaaaleqabaGaamOqaaaaaOqaaiaaco% dadaqadaqaaiaacgdacqGHsislcaqG2baacaGLOaGaayzkaaaaaiaa% bIgadaahaaWcbeqaaiaackdaaaGcdaWcaaqaaiaabsgadaahaaWcbe% qaaiaackdaaaGccaqG3baabaGaaeizaiaabIhafaqabeGabaaajaaq% baqcLbkacaGGYaaajaaybaqcLbkacaGGXaaaaaaakiabgUcaRmaala% aabaGaaiinaiaabEfadaahaaWcbeqaaiaadAeaaaaakeaacaGGZaWa% aeWaaeaacaGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGOb% WaaWbaaSqabeaacaGGZaaaaOWaaSaaaeaacaqGKbWaaWbaaSqabeaa% caGGZaaaaOGaae4DaaqaaiaabsgacaqG4bqcaaubaeqabiqaaaqcaa% saaiaacodaaKaaafaajugGaiaacgdaaaaaaOGaeyypa0Jaaiimaiaa% cYcaaeaadaWcaaqaaiaabsgacaqG3baabaGaaeizaiaabIhaliaacg% daaaGccqGHsisldaWcaaqaaiaacsdacqqHyoqudaahaaWcbeqaaiaa% bkeaaaaakeaacaGGZaWaaeWaaeaacaGGXaGaeyOeI0IaaeODaaGaay% jkaiaawMcaaaaacaqGObWaaSaaaeaacaqGKbWaaWbaaSqabeaacaGG% YaaaaOGaae4DaaqaaiaabsgacaqG4bqbaeqabiqaaaqcaauaaKqzGc% GaaiOmaaqcaawaaKqzGcGaaiymaaaaaaGccqGHRaWkdaWcaaqaaiaa% csdacqqHyoqudaahaaWcbeqaaiaabAeaaaaakeaacaGGZaWaaeWaae% aacaGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGObWaaWba% aSqabeaacaGGYaaaaOWaaSaaaeaacaqGKbWaaWbaaSqabeaacaGGZa% aaaOGaae4DaaqaaiaabsgacaqG4bqcaaubaeqabiqaaaqcaasaaiaa% codaaKaaafaajugGaiaacgdaaaaaaOGaeyypa0JaaiimaiaacYcaaa% aa!993A!\[\begin{gathered}{\text{w - }}\frac{{4{\text{W}}^B }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^2 \frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} + \frac{{4{\text{W}}^F }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^3 \frac{{{\text{d}}^3 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}3 \\1 \\\end{array} }} = 0, \hfill \\\frac{{{\text{dw}}}}{{{\text{dx}}1}} - \frac{{4\Theta ^{\text{B}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}\frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} + \frac{{4\Theta ^{\text{F}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^2 \frac{{{\text{d}}^3 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}3 \\1 \\\end{array} }} = 0, \hfill \\\end{gathered}\]with exponentially small error as L/h→∞, where 2h is the plate thickness and L is the length scale of ω in the x 1-direction. The four coefficients W B, WF, Θ B , Θ F are computable constants which depend upon the geometry of the support and the elastic properties of the support and the plate, but are independent of the length of the plate and the loading applied to it. The leading terms in these boundary conditions as L/h→∞ (with all elastic moduli remaining fixed) are the same as those for a thin plate with a clamped edge. However by obtaining asymptotic formulae and general inequalities for Θ B , W F, we prove that these constants take large values when the support is ‘soft’ and so may still have a strong influence even when h/L is small. The coefficient W F is also shown to become large as the size of the support becomes large but this effect is unlikely to be significant except for very thick plates. When h/L is small, the first order corrected boundary conditions are w=0,% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaadaWcaaqaaiaabsgacaqG% 3baabaGaaeizaiaabIhaliaacgdaaaGccqGHsisldaWcaaqaaiaacs% dacqqHyoqudaahaaWcbeqaaiaabkeaaaaakeaacaGGZaWaaeWaaeaa% caGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGObWaaSaaae% aacaqGKbWaaWbaaSqabeaacaGGYaaaaOGaae4DaaqaaiaabsgacaqG% 4bqbaeqabiqaaaqcaauaaKqzGcGaaiOmaaqcaawaaKqzGcGaaiymaa% aaaaGccqGH9aqpcaGGWaGaaiilaaaa!5DD4!\[\frac{{{\text{dw}}}}{{{\text{dx}}1}} - \frac{{4\Theta ^{\text{B}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}\frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} = 0,\]which correspond to a hinged edge with a restoring couple proportional to the angular deflection of the plate at the edge.  相似文献   

18.
We investigate the persistence of front propagation for functional reaction-diffusion equations
_boxclose_boxclose = v_xx + F(v)v_\tau = v_{xx} + F(v)  相似文献   

19.
ConsidertheCauchyproblemforthewaveequationinRN×R+(N≥2):2u(x,t)t2-xiaij(x)xju=|u|p-1·u  ((x,t)∈RN×(0,T)),u(x,0)=g(x) (x∈RN),ut(x,0)=h(x) (x∈RN),(1)whereu(x,t)isnontrivialsolutionwithfinitespeedofpropagationandissupportedonaforwardcone(x,t)·t≥0,|…  相似文献   

20.
A class of complex function of rational fraction type is frequently used to describe the dynamical properties of systems. It is however quite difficult to establish a mathematical model of this type on the basis of amplitude and phase frequency data collected from experiments conducted on the related physical system. Since the erection of mathematical model G(j) would involve the solution of a set of nonlinear simultaneous equations with the unknown coefficients ais and bis(i=0, 1, ..., m, ..., n) in G(j). Up to now, these nonlinear equations have been considered to be very difficult to solve directly. In spite of the fact there are special computer programmes in certain software packages available to tackle this problem, it is by no means an easy task due to the complex procedures involved in picking up a set of initial values that should be close enough to the exact solutions. This paper proposes a simplified method of linearizing these nonlinear equations set so that direct solution is possible. The method can also be applied to systems with factors of (j) andej0 in G(j). An illustration by a workable example is furnished at the end of this paper to show its versatility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号