首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For 2ir-periodic polynomial splines of order r, of minimal defect, with nodes at the points ktr/n, ne, there are established the sharp inequalities $$\parallel s^{(1)} \parallel _{ 2} \leqslant \frac{{\parallel \varphi _{n,r}^{(1)} \parallel _{ 2} }}{{\parallel \Delta _h^l \varphi _{n, r} \parallel _{ 2} }}\parallel \Delta _h^l s\parallel _{ 2} \leqslant \frac{{\parallel \varphi _{n,r}^{(1)} \parallel _{ 2} }}{{\parallel \varphi _{n, r} \parallel _{ 2} }}\parallel s \parallel _{ 2} , l = 1, ..., r - 1,$$ valid for 0 $$\Delta _h^l / (x) = \sum\limits_{k = 0}^l {( - 1)^k C_l^k /} (x + (l - 2k) h)$$ .  相似文献   

2.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

3.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

4.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

5.
For a certain class of complex-valued functionsf(x), ?∞ $$u_N = \mathop {\inf }\limits_{\parallel A\parallel \leqslant N_\parallel f^{(n)} \parallel _{L_2 \leqslant } 1} \parallel f^{(k)} - A(f)\parallel C$$ of a differential operator by linear operators A with the norm ∥A∥ L2 C ≤N,N,>0. Using the value uN, the smallest constant Q in the inequality $$\parallel f^{(k)} \parallel _Q \leqslant Q\parallel f\parallel _{L_2 }^\alpha \parallel f^{(n)} \parallel _{L_2 }^\beta $$ is found.  相似文献   

6.
ПустьM m - множество 2π-п ериодических функци йf с конечной нормой $$||f||_{p,m,\alpha } = \sum\limits_{k = 1}^m {||f^{(k)} ||_{_p } + \mathop {\sup }\limits_{h \ne 0} |h|^{ - \alpha } ||} f^{(m)} (o + h) - f^{(m)} (o)||_{p,} $$ где1 ≦ p ≦ ∞, 0≦α≦1. Рассмотр им средние Bалле Пуссе на $$(\sigma _{n,1} f)(x) = \frac{1}{\pi }\int\limits_0^{2x} {f(u)K_{n,1} (x - u)du} $$ и $$(L_{n,1} f)(x) = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^{2n} {f(x_k )K_{n,1} } (x - x_k ),$$ де0≦l≦n и x k=2kπ/(2n+1). В работе по лучены оценки для вел ичин \(||f - \sigma _{n,1} f||_{p,r,\beta } \) и $$||f - L_{n,1} f||_{p,r,\beta } (r + \beta \leqq m + \alpha ).$$   相似文献   

7.
For the classes of periodic functions with r-th derivative integrable in the mean,we obtain a best quadrature formula of the form $$\begin{gathered} \int_0^1 {f(x)dx = \sum\nolimits_{k = 0}^{m - 1} {\sum\nolimits_{l = 0}^\rho {p_{k,l} } } } f^{(l)} (x_k ) + R(f),0 \leqslant \rho \leqslant r - 1, \hfill \\ 0 \leqslant x_0< x_1< ...< x_{m - 1} \leqslant 1, \hfill \\ \end{gathered}$$ where ρ=r?2 and r?3, r=3, 5, 7, ..., and we determine an exact bound for the error of this formula.  相似文献   

8.
9.
Existence, uniqueness, and ergodicity are proved for a stationary distribution for a service system having countably many servomechanisms with input flow rate μk depending on the number k of servomechanisms occupied, and with arbitrary (identical) distribution of the service time with finite mean μ, under the condition \(\mu \mathop {\overline {\lim } }\limits_{k \to \infty } \frac{{\lambda _k }}{{k + 1}}< 1\) . For this system we have, in particular, Erlang's formula $$p_k (t)\mathop \to \limits_{k + \infty } p_k = \frac{{\lambda _0 ...\lambda _{k - 1} \mu ^k }}{{k!}}p_0 ,k = 0,1,...,p_0^{ - 1} = \sum\nolimits_{k = 0}^\infty {\frac{{\lambda _0 ...\lambda _{k - 1} \mu ^k }}{{k!}}} ,\lambda _{ - 1} = 1.$$   相似文献   

10.
We obtain an estimate of the modulus of a complete multiple rational trigonometric sum: $$\left| {\sum {_{x_{1, \ldots ,} x_r = 1^{\exp \left( {{{2\pi if\left( {x_{1, \ldots ,} x_r } \right)} \mathord{\left/ {\vphantom {{2\pi if\left( {x_{1, \ldots ,} x_r } \right)} q}} \right. \kern-\nulldelimiterspace} q}} \right)} }^q } } \right| \ll q^{{{r - 1} \mathord{\left/ {\vphantom {{r - 1} {n + \varepsilon }}} \right. \kern-\nulldelimiterspace} {n + \varepsilon }}} ,$$ where $$\begin{gathered} f\left( {x_{1, \ldots ,} x_r } \right) = \sum {_{0 \leqslant t_1 , \ldots ,t_r \leqslant n^a t_1 , \ldots ,t_r x_1^{t_1 } \ldots x_r^{t_r } ,} } \hfill \\ a_{0, \ldots ,0} = 0,\left( {a_{0, \ldots ,0,1} , \ldots ,a_{n, \ldots ,n,} q} \right) = 1 \hfill \\ \end{gathered} $$ , and an estimate of the modulus of a multiple trigonometric integral.  相似文献   

11.
For the class Cε={f∈C: En, n≤Z+} where \(\left\{ {\varepsilon _n } \right\}_{n \in Z_ + } \) is a sequence of numbers tending monotonically to zero, we establish the following precise (in the sense of order) bounds for the error of approximation by de la Vallée-Poussin sums: (1) $$c_1 \sum\nolimits_{j = n}^{2\left( {n + l} \right)} {\frac{{\varepsilon _j }}{{l + j - n + 1}}} \leqslant \mathop {\sup }\limits_{f \in C_\varepsilon } \left\| {f - V_{n, l} \left( f \right)} \right\|_C \leqslant c_2 \sum\nolimits_{j = n}^{2\left( {n + l} \right)} {\frac{{\varepsilon _j }}{{l + j - n + 1}}} \left( {n \in N} \right)$$ , where c1 and c2 are constants which do not depend on n orl. This solves the problem posed by S. B. Stechkin at the Conference on Approximation Theory (Bonn, 1976) and permits a unified treatment of many earlier results obtained only for special classes Cε of (differentiable) functions. The result (1) substantially refines the estimate (see [1]) (2) $$\left\| {V_{n, l} \left( f \right) - f} \right\|_C = O\left( {\log {n \mathord{\left/ {\vphantom {n {\left( {l + 1} \right) + 1}}} \right. \kern-\nulldelimiterspace} {\left( {l + 1} \right) + 1}}} \right) E_n \left[ f \right] \left( {n \to \infty } \right)$$ and includes as particular cases the estimates of approximations by Fejér sums (see [2]) and by Fourier sums (see [3]).  相似文献   

12.
This paper is devoted to study the interpolation of higher order by the nodes $$\left\{ { \pm 1} \right\} \cup \left\{ {\cos \frac{{(2k - 1)\pi }}{{2n}}} \right\}_{k = 1}^n ,n = 1,2,...\,.$$   相似文献   

13.
It is established that for classW p r (r=i, 2, ...; 1?p?∞) the best quadrature formulas of the form $$\int_0^1 {f\left( x \right)dx = } \Sigma _{k = 0}^\rho \mathop {\Sigma _{i = 1}^n }\limits_{\left( {0 \leqslant \rho \leqslant r - 1} \right)} a_{ik} f^{\left( k \right)} \left( {x_i } \right) + R\left( f \right)$$ , when ρ = 2m and ρ = 2m + 1, coincide with one another. This same fact also supervenes for the class (r=1, 2, ...; 1?p?∞) of periodic functions.  相似文献   

14.
Estimates are obtained for the nonsymmetric deviations Rn [sign x] and Rn [sign x]L of the function sign x from rational functions of degree ≤n, respectively, in the metric $$c([ - 1, - \delta ] \cup [\delta ,1]), 0< \delta< exp( - \alpha \surd \overline n ), \alpha > 0,$$ and in the metric L[?1, 1]: $$\begin{gathered} R_n [sign x] _{\frown }^\smile exp \{ - \pi ^2 n/(2 ln 1/\delta )\} , n \to \infty , \hfill \\ 10^{ - 3} n^{ - 2} \exp ( - 2\pi \surd \overline n )< R_n [sign x_{|L}< \exp ( - \pi \surd \overline {n/2} + 150). \hfill \\ \end{gathered} $$ Let 0 < δ < 1, Δ (δ)=[?1, ? δ] ∪ [δ, 1]; $$\begin{gathered} R_n [f;\Delta (\delta )] = R_n [f] = inf max |f(x) - R(x)|, \hfill \\ R_n [f;[ - 1,1] ]_L = R_n [f]_L = \mathop {inf}\limits_{R(x)} \smallint _{ - 1}^1 |f(x) - R(x)|dx, \hfill \\ \end{gathered} $$ where R(x) is a rational function of order at most n. Bulanov [1] proved that for δ ε [e?n, e?1] the inequality $$\exp \left( {\frac{{\pi ^2 n}}{{2\ln (1/\delta }}} \right) \leqslant R_n [sign x] \leqslant 30 exp\left( {\frac{{\pi ^2 n}}{{2\ln (1/\delta + 4 ln ln (e/\delta ) + 4}}} \right)$$ is valid. The lower estimate in this inequality was previously obtained by Gonchar ([2], cf. also [1]).  相似文献   

15.
On simultaneous approximation by lagrange interpolating polynomials   总被引:1,自引:0,他引:1  
This paper considers to replace △_m(x)=(1-x~2)~2(1/2)/n +1/n~2 in the following result for simultaneousLagrange interpolating approximation with (1-x~2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then|f~(k)(x)-P_~(k)(f,x)|=O(1)△_(n)~(a-k)(x)ω(f~(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q,where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_nU Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.  相似文献   

16.
The purpose of this paper is to show the following: Let 0<p<1/2. IfT=U|T| is a p-hyponormal operator with a unitaryU on a Hilbert space, then $$\sigma (T) = \mathop \cup \limits_{0 \leqslant k \leqslant 1} \sigma (T_{\left[ k \right]} ),$$ where $$T_{\left[ k \right]} = U[(1 - k)S_U^ - (\left| T \right|^{2p} ) + kS_U^ + (\left| T \right|^{2p} ]^{\tfrac{1}{{2p}}} $$ andS U ± (T) denote the polar symbols ofT.  相似文献   

17.
If φ: [0, 1) → (0,∞) is a non-decreasing unbounded function, then the φ-order of a meromorphic function f in the unit disc is defined as $$ \sigma _\phi (f) = \mathop {\lim \sup }\limits_{r \to 1^ - } \frac{{\log ^ + T(r,f)}} {{\log \phi (r)}}, $$ where T(r, f) is the Nevanlinna characteristic of f. In particular, $ \sigma _{\tfrac{1} {{1 - r}}} $ f is the order of f, and $ \sigma _{\log \tfrac{1} {{1 - r}}} $ f is the logarithmic order of f. Several results on the finiteness of the φ-order of solutions of $$ f^{(k)} + A_{k - 1} (z)f^{(k - 1)} + \cdots + A_1 (z)f' + A_0 (z)f = 0 $$ are obtained in the case when the coefficients A 0(z), ...,A k?1(z) are analytic functions in the unit disc. This paper completes some earlier results by various authors.  相似文献   

18.
19.
Consider the Riesz product $\mu _a = \mathop \prod \limits_{n = 1}^\infty (1 + r\cos (q^n t + \varphi _n ))$ . We prove the following approximative formula for the dimension ofμ a. $$\dim \mu _a = 1 - \frac{1}{{\log q}}\int_0^{2\pi } {(1 + r\cos x)\log (1 + r\cos x)\frac{{dx}}{{2\pi }} + 0\left( {\frac{r}{{q^2 \log q}}} \right).}$$   相似文献   

20.
Consider an ordered Banach space with a cone of positive elementsK and a norm ∥·∥. Let [a,b] denote an order-interval; under mild conditions, ifx*∈[a,b] then $$||x * - \tfrac{1}{2}(a + b)|| \leqslant \tfrac{1}{2}||b - a||.$$ This inequality is used to generate error bounds in norm, which provide on-line exit criteria, for iterations of the type $$x_r = Ax_{r - 1} + a,A = A^ + + A^ - ,$$ whereA + andA ? are bounded linear operators, withA + K ?K andA ? K ? ?K. Under certain conditions, the error bounds have the form $$\begin{gathered} ||x * - x_r || \leqslant ||y_r ||,y_r = (A^ + - A^ - )y_{r - 1} , \hfill \\ ||x * - x_r || \leqslant \alpha ||\nabla x_r ||, \hfill \\ ||x * - \tfrac{1}{2}(x_r + x_{r - 1} )|| \leqslant \tfrac{1}{2}||\nabla x_r ||. \hfill \\ \end{gathered} $$ These bounds can be used on iterative methods which result from proper splittings of rectangular matrices. Specific applications with respect to certain polyhedral cones are given to the classical Jacobi and Gauss-Seidel splittings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号