首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Meng 《Molecular physics》2013,111(18):2891-2899
The second virial coefficients for several linear molecules were calculated using the 2CLJ potential including the electrostatic and induction effects with modified mixing rules for unlike pairs. Least squares fits of experimental values for B(T) were used to calculate the energy parameters σ and ε in the LJ core potential for N2, O2, Cl2, F2, CO, CO2, NO, N2O, C2H6, C2F6 and the strongly polar molecules CH3Cl, CH3F, CH3CF3, CH3CHF2, and CF3CH2F. The analysis takes into account rotation of the dipole out of the molecular axis. The calculated results for the second virial coefficient agree well with experimental data. In addition, the effect of the induction terms on the potential for calculating the second virial coefficient is shown to be important only for the molecules with strong dipole or quadrupole moments.  相似文献   

2.
The microwave spectrum of methyltrichlorogermane has been investigated in the region 26.5 to 40.0 GHz. The ground state rotational constants, B, were found to be 1602.19, 1601.42, 1601.10, 1600.71, 1600.02, 1537.84, 1537.10, and 1536.36 MHz for the symmetric top molecules CH370Ge35Cl3, CH372Ge35Cl3, CH373Ge35Cl3, CH374Ge35Cl3, CH376Ge35Cl3, CH370Ge37Cl3, CH372Ge37Cl3, and CH374Ge37Cl3, respectively. For the asymmetric top molecules CH372Ge35Cl237Cl and CH374Ge35Cl237Cl the ground state rotational constants A, B, and C were found to be 1597.96, 1559.31, 1203 and 1597.17, 1558.59, 1207 MHz, respectively. From the rotational constants the rs values for the GeCl bond distance of 2.135 ± 0.006 Å and the CGeCl bond angle of 106.0 ± 0.7° were obtained. The centrifugal distortion constant for the CH3Ge35Cl3 species was calculated to be 0.35 ± 0.08 kHz. The Raman spectra of methyltrichlorogermane has been recorded in the gas phase and the methyl torsional overtone (Δν = 2) was observed. From the observed frequency shift the barrier to internal rotation has been calculated to be 1.45 kcal/mole.  相似文献   

3.
Extended and minimal basis set ab-initio valence-bond (VB) calculations have been performed for the following molecules: LiH, CH, 1CH2, 3CH2, CH3, NH3 and H2O. The influence of the choice of the basis sets and of the structures included on the values of a few observables, including energy, geometry, hyperfine coupling constants and dipole moment, has been studied.  相似文献   

4.
The proton and deuteron magnetic resonance spectra of CH4, CH3D, CH2D2, CHD3, CD4, SiH4, SiH3D, SiH2D2, SiH3D, SiD4, GeH3D, dissolved in nematic liquid crystals, are reported. It was found that these molecules, which are essentially tetrahedral, exhibit anisotropic interactions and are partially oriented in the nematic phase. This effect is presumably due to slight deformations induced by the anisotropic medium. Some of the aspects related to the interpretation of the results are discussed.  相似文献   

5.
This work is a systematic study of molecular structure of fluoro-, chloro-, and fluorochloromethanes. For the first time, the accurate ab initio structure is computed for 10 molecules (CF4, CClF3, CCl2F2, CCl3F, CHClF2, CHCl2F, CH2F2, CH2ClF, CH2Cl2, and CCl4) at the coupled cluster level of electronic structure theory including single and double excitations augmented by a perturbational estimate of the effects of connected triple excitations [CCSD(T)] with all electrons being correlated and Gaussian basis sets of at least quadruple-ζ quality. Furthermore, when possible, namely for the molecules CH2F2, CH2Cl2, CH2ClF, CHClF2, and CCl2F2, accurate semi-experimental equilibrium (rSEe) structure has also been determined. This is achieved through a least-squares structural refinement procedure based on the equilibrium rotational constants of all available isotopomers, determined by correcting the experimental ground-state rotational constants with computed ab initio vibration–rotation interaction constants and electronic g-factors. The computed and semi-experimental equilibrium structures are in excellent agreement with each other, but the rSEe structure is generally more accurate, in particular for the CF and CCl bond lengths. The carbon–halogen bond length is discussed within the framework of the ligand close-packing model as a function of the atomic charges. For this purpose, the accurate equilibrium structures of some other molecules with alternative ligands, such as CH3Li, CF3CCH, and CF3CN, are also computed.  相似文献   

6.
The centrifugal distortion constant DK of a symmetric top molecule has proved a very elusive parameter to estimate by spectroscopic analysis. Values of DK have been calculated for the molecules BF3, SO3, NH3, PH3, AsH3, NF3, PF3, AsF3, CH3D, SiH3D, GeH3D, CH3F, CH3Cl, CH3Br, CH3I, CHeCN, CH3CCH, H2C3H2, cyclo-C3H6, and isotopic modifications thereof, in terms of their quadratic force constants. In all cases the force constants used are reliably determined by existing spectroscopic data. Where direct comparison is possible, good agreement with experimental DK values is found, and the calculated constants are considered reliable to ± 5%. The constants are intended to be of assistance in future spectroscopic and structural studies on the molecules listed. Structural applications to methyl iodide, silane, and cyclopropane are considered.  相似文献   

7.
It is of fundamental importance to investigate either O2 or CH4 molecules across nanochannels in many areas such as breathing or separation. Thus, many researches have focused on such a single type of molecules across nanochannels. However, O2 and CH4 can often appear together and crucially affect human life, say, in a mine. On the basis of molecular dynamics simulations, here we attempt to investigate the mixture of O2 and CH4, in order to identify their different transport properties in a nanochannel. We take a single-walled carbon nanotube (SWCNT) as a model nanochannel, and find that their transport properties are distinctly different. As the concentration of O2 increases up to a high value of 0.8, it is always faster for CH4 molecules to transport across the SWCNT, and the total number of gas molecules transporting across the SWCNT is decreased. Meanwhile, CH4 molecules are always dominant in the SWCNT, and the total number of O2 or CH4 inside the SWCNT is a constant. By calculating the van der Waals interaction between the SWCNT and O2 or CH4, we find that the net interaction between CH4 and the SWCNT is much stronger. Our findings may offer some hints on how to separate CH4 from O2, and/or store CH4 efficiently.  相似文献   

8.
Utilizing the unique features of the scanning atom probe (SAP) the binding states of the biomolecules, leucine and methionine, are investigated at atomic level. The molecules are mass analyzed by detecting a single atom and/or clustering atoms field evaporated from a specimen surface. Since the field evaporation is a static process, the evaporated clustering atoms are closely related with the binding between atoms forming the molecules. For example, many thiophene radicals are detected when polythiophene is mass analyzed by the SAP. In the present study the specimens are prepared by immersing a micro cotton ball of single walled carbon nanotubes (SWCNT) in the leucine or methionine solution. The mass spectra obtained by analyzing the cotton balls exhibit singly and doubly ionized carbon ions of SWCNT and the characteristic fragments of the molecules, CH3, CHCH3, C4H7, CHNH2 and COOH for leucine and CH3, SCH3, C2H4, C4H7, CHNH2 and COOH for methionine.  相似文献   

9.
Microwave spectra of dimethyl ether, dimethyl sulfide, and dimethyl silane in the torsionally excited states have been measured. The methyl internal rotations of these molecules were analyzed from the observed multiplets and from the reported multiplets of transitions. The method developed for ethyl silane in the previous paper was extended to equivalent two top molecules. For equivalent two top molecules, apparent barriers of methyl internal rotations obtained from the experiments were corrected by the kinetic and potential cross terms. They are V3=2645.8±10.0, 2632.4 ± 42.9, 2146.0 ± 13.8, 1651.5 ± 10.1, 1648.0 ± 13.7, and 1649.9 ± 11.8 cal/mol for (CH3)2O, (CD3)2O, (CH3)2S, (CH3)2SiH2, (CH3)2SiD2, and (CH3)2SiHD, respectively. The potential cross terms, V12(1−cos3α1)(1−cos3α2) terms are negligible for the three molecules, while V12sin3α1sin3α2 terms are also very close to zero except those for (CH3)2O and (CD3)2O which are small but not negligible (V12=−124.4,−158.0 cal/mol). The investigations were extended to those of non-equivalent two top species and the corrected barriers of the methyl tops, V3, are obtained to be 2615.6 ± 8.6 and 2155.0 ± 15.2 cal/mol for CH3OCD3 and CH3SCD3. The corrected barrier, V3(CD3) of CH3OCD3, is obtained to be 2634.4 ± 7.1 cal/mol, while that of CH3SCD3 cannot be solved due to the lack of the data available.  相似文献   

10.
Yuhai Hu 《Surface science》2007,601(12):2467-2472
The interaction between NO and CH3OH on the surface of stepped Pt(3 3 2) was investigated using Fourier transform infra red reflection-absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). At 90 K, pre-dosed CH3OH molecules preferentially adsorb on step sites, suppressing the adsorption of NO molecules on the same sites. However, due to a much stronger interaction with Pt, at 150 K and higher, the adsorption of NO molecules on step sites is restored, giving rise to peaks closely resembling those of NO molecules adsorbed on clean Pt(3 3 2) surface. Adsorbed CH3OH is very reactive on this surface, and is readily oxidized to formate in the presence of O2, even at 150 K. In contrast, reactions between CH3OH and co-adsorbed NO are slight to non-existent. There are no new peaks in association with intermediates resulting from CH3OH-NO interactions. It is concluded that the reduction of NO with CH3OH on Pt(3 3 2) does not proceed through a mechanism of forming intermediates.  相似文献   

11.
Hydroperoxides and the corresponding peroxy radicals are important intermediates during the partial oxidation of methyl ethyl sulfide (CH3SCH2CH3) in both atmospheric chemistry and in combustion. Structural parameters, internal rotor potentials, bond dissociation energies, and thermochemical properties (ΔHfo, So and Cp(T)) of 3 corresponding hydroperoxides CH2(OOH)SCH2CH3, CH3SCH(OOH)CH3, CH3SCH2CH2OOH of methyl ethyl sulfides, and the radicals formed via loss of a hydrogen atom are important to understanding the oxidation reactions of MES. The lowest energy molecular structures were identified using the density functional B3LYP/6‐311G(2d,d,p) level of theory. Standard enthalpies of formation (ΔHfo298) for the radicals and their parent molecules were calculated using the density functional B3LYP/6‐31G(d,p), B3LYP/6‐31 + G(2d,p), and the composite CBS‐QB3 ab initio methods. Isodesmic reactions were used to determine ?Hfo values. Internal rotation potential energy diagrams and rotation barriers were investigated using the B3LYP/6‐31G(d,p) level theory. Contributions for So298 and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation based on the structures and vibrational frequencies obtained by the density functional calculations, with contributions from torsion frequencies replaced by internal rotor contributions. The recommended values for enthalpies of formation of the most stable conformers of CH3SCH2CH2, CH2(OOH)SCH2CH3, CH3SCH(OOH)CH3, and CH3SCH2CH2OOH are ?14.0, ?33.0, ?37.2, and ?32.7 kcal/mol, respectively. Group additivity values were developed for estimating properties of structurally similar and larger sulfur‐containing peroxides. Groups for use in group additivity estimation of sulfur peroxide thermochemical properties were developed.  相似文献   

12.
The cold flames generated by the interaction of gaseous fluorine and CH3I, C2H5I, CH2Cl2, CHCl3, and CCl4 are described. The spectra of these flames were determined. The spectroscopic results are interpreted from the point of view of the occurrence of branching in fluorination chain reactions, when superequilibrium concentrations of chemically excited molecules are formed, the latter subsequently decaying into a radical and an atom (as in the case of the F2+CH3I system) or into a biradical and a saturated molecule (F2+CH2CI2 system).In conclusion, the author wishes to express his gratitude to Academician V. N. Kondrat'ev, A. E. Shilov, and A. M. Chaikin for a discussion of the results and assistance in the work.  相似文献   

13.
The line widths of cyanogen bromide (BrCN) have been measured at room temperature (305 K) by using a double modulation microwave spectrograph. The self-broadening of two quadrupole hyperfine lines of the transition J = 3 → 4 has been measured. The foreign gas broadening by OCS, CO2, N2, CH3CN, CH3I, HCHO and CH3CHO molecules has been measured only for the intense line at 32·957 GHz. These measured line widths have been compared with the calculated line widths using Anderson [6] as well as Murphy and Boggs [8] theories of pressure broadening.  相似文献   

14.
The complete GVFF of CHF3, CH2F2, and CH3F has been calculated from self-consistent-field ab initio energies, using a 4–31 G basis set. The larger part of the interaction force constants is close to those of the best available force fields from experimental data. Only one interaction term in CH3F and the interaction force constants of the A1 species in CH2F2 differ appreciably from the experimental ones. Using constraints from the ab initio studies we have improved the GVFF of CH3F and CH2F2. It is shown that all comparable stretch-stretch interaction terms are of the same order of magnitude in the three molecules. The sign of all stretch/bend force constants are in accordance with those predicted by the hybrid orbital force field.  相似文献   

15.
The absolute Raman intensities and the depolarization ratios of the vibrational bands of gaseous CH4, CH3D, CH2D2, CHD3 and CD4 have been computed here using a compact formulation of the bond polarizability theory, in its zero and first-order approximations. The agreement with experimental values taken from the literature is very good for the first-order approximation, although the difference between both approximations is not very large for these molecules. The derivatives of the polarizability with respect to the symmetry coordinates of methane are given with signs that are physically meaningful.  相似文献   

16.
Total cross sections of electron scattering by eight molecules NF3, PF3, N(CH3)3, P(CH3)3, NH(CH3)2, PH(CH3)2, NH2CH3 and PH2CH3, which have some structural similarities, are calculated at the Hartree-Fork level by the modified additivity rule approach [D.H. Shi, J.F. Sun, Z.L. Zhu, H. Ma, Y.F. Liu, Eur. Phys. J. D 45, 253 (2007); D.H. Shi, J.F. Sun, Y.F. Liu, Z.L. Zhu, X.D. Yang, Chin. Opt. Lett. 4, 192 (2006)]. The modified additivity rule approach takes into considerations that the contributions of the geometric shielding effect vary as the energy of incident electrons, the dimension of target molecule, the number of electrons in the molecule and the number of atoms constituting the molecule. The present investigations cover the impact energy range from 30 to 5000 eV. The quantitative total cross sections are compared with those obtained by experiments and other theories. Excellent agreement is observed even at energies of several tens of eV. It shows that the modified additivity rule approach is applicable to carry out the total cross section calculations of electron scattering by these molecules at intermediate and high energies, in particular over the energy range above 80 eV or so. It proves that the microscopic molecular properties, such as the geometrical size of the target and the number of atoms constituting the molecule, are of crucial importance in the TCS calculations. The new results for PH(CH3)2 and PH2CH3 are also presented at energies from 30 to 5000 eV, although no experimental and theoretical data are available for comparison. In the present calculations, the atoms are still represented by the spherical complex optical potential, which is composed of static, exchange, polarization and absorption terms.  相似文献   

17.
By means of coupled cluster theory and correlation consistent basis sets we investigated the thermochemistry of dimethyl sulphide (DMS), dimethyl disulphide (DMDS) and four closely related sulphur-containing molecules: CH3SS, CH3S, CH3SH and CH3CH2SH. For the four closed-shell molecules studied, their enthalpies of formation (EOFs) were derived using bomb calorimetry. We found that the deviation of the EOF with respect to experiment was 0.96, 0.65, 1.24 and 1.29 kcal/mol, for CH3SH, CH3CH2SH, DMS and DMDS, respectively, when ΔHf,0 = 65.6 kcal/mol was utilised (JANAF value). However, if the recently proposed ΔHf,0 = 66.2 kcal/mol was used to estimate EOF, the errors dropped to 0.36, 0.05, 0.64 and 0.09 kcal/mol, respectively. In contrast, for the CH3SS radical, a better agreement with experiment was obtained if the 65.6 kcal/mol value was used. To compare with experiment avoiding the problem of the ΔHf,0 (S), we determined the CH3–S and CH3–SS bond dissociation energies (BDEs) in CH3S and CH3SS. At the coupled cluster with singles doubles and perturbative triples correction level of theory, these values are 48.0 and 71.4 kcal/mol, respectively. The latter BDEs are 1.5 and 1.2 kcal/mol larger than the experimental values. The agreement can be considered to be acceptable if we take into consideration that these two radicals present important challenges when determining their EOFs. It is our hope that this work stimulates new studies which help elucidate the problem of the EOF of atomic sulphur.  相似文献   

18.
The formation of hydrogen-bonded complexes (CH3)2X ? HA is characterized by small frequency perturbations of the internal vibrations of the base molecules in a low-temperature matrix. Apart from the νCXC vibrations the largest shifts are measured in the νCH3 spectral region. The unexpected large blue shifts, ΔνCH, are interpreted as an indirect evidence for the existence of the trans lone pair effect in methyl chalcogenides. Additional support is obtained from a comparison between the complexes of HCl and H2O with (CH3)2O, (CH3)2S, and CH3OH.  相似文献   

19.
Sulfide alkoxy radicals are important intermediates during the partial oxidation of alkyl sulfides in atmospheric chemistry and in combustion. The atmospheric reaction sequence to formation of the alkoxy radicals includes (1) initial reaction with OH to create a radical on a carbon site, (2) the carbon radical then associates with 3O2 to form a peroxy radical, and (3) an NO radical reacts with the peroxy radical to form an alkoxy radical (RO?) plus NO2. This study determines structural parameters, internal rotor potentials, bond dissociation energies, and thermochemical properties (ΔfH°, S°, and Cp(T)) of 3 corresponding alcohols HOCH2SCH2CH3, CH3SCH(OH)CH3, and CH3SCH2CH2OH of methyl ethyl sulfides studied in order to characterize the thermochemistry of the respective alkoxy radicals. The lowest energy molecular structures were calculated using the B3LYP density functional level of theory with the 6‐311G(2d,d,p) basis set. Standard enthalpies of formation (Δf298) for the radicals and their parent molecules were calculated using B3LYP/6‐31 + G(2d,p), CBS‐QB3, M062x/6‐311 + g(2d,p), and G3MP2B3 methods. Isodesmic reactions were used to determine ?fH° values. Internal rotation potential energy diagrams and rotation barriers were investigated using the B3LYP/6‐31 + G(d,p) level theory. The contributions for S°298 and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation based on the structures and vibrational frequencies obtained by CBS‐QB3 calculations, with contributions from torsion frequencies replaced by internal rotor contributions. Group additivity and hydrogen bond increment values were developed for estimating properties of structurally similar and larger sulfur‐containing peroxide molecules and their radicals.  相似文献   

20.
Core XPS spectra for carbon, oxygen, and sulfur and KLL Auger spectra for sulfur in CH3OCS2CH3, (CH3OCS2)2, CS2, and OCS have been measured and relaxation shifts determined for the sulfur atoms by combining the S 1s measurement with the S KLL (1D2) measurement.Relaxation shifts of the sulfur atoms were also estimated from CNDO results for the neutral and core-ionized molecules using the equivalent cores approximation. The results are in qualitative agreement with the measurements, but exaggerate the relaxation by about 100%.The results show that the bonding of the (CH3O-) group in the two xanthate compounds is very similar. The ionization energies of the S and -S- atoms within the xanthate molecules differ from each other by 1.5 eV; this difference arises almost entirely from the initial-state charge distribution rather than from final-state relaxation. However, the ionization energies of similarly bonded sulfur atoms are nearly the same. The effect of the oxygen atom on the bonding of the carbon and -S- atoms in the (-CS2-) group in the xanthate compounds is to increase the (C 1s-S 2p32) ionization energy difference from the value reported for aliphatic disulfides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号