首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
NMR measurements of a large set of protein backbone one-bond dipolar couplings have been carried out to refine the structure of the third IgG-binding domain of Protein G (GB3), previously solved by X-ray crystallography at a resolution of 1.1 A. Besides the commonly used bicelle, poly(ethylene glycol), and filamentous phage liquid crystalline media, dipolar couplings were also measured when the protein was aligned inside either positively or negatively charged stretched acrylamide gels. Refinement of the GB3 crystal structure against the (13)C(alpha)-(13)C' and (13)C'-(15)N dipolar couplings improves the agreement between experimental and predicted (15)N-(1)H(N) as well as (13)C(alpha)-(1)H(alpha) dipolar couplings. Evaluation of the peptide bond N-H orientations shows a weak anticorrelation between the deviation of the peptide bond torsion angle omega from 180 degrees and the angle between the N-H vector and the C'-N-C(alpha) plane. The slope of this correlation is -1, indicating that, on average, pyramidalization of the peptide N contributes to small deviations from peptide bond planarity ( = 179.3 +/- 3.1 degrees ) to the same degree as true twisting around the C'-N bond. Although hydrogens are commonly built onto crystal structures assuming the N-H vector orientation falls on the line bisecting the C'-N-C(alpha) angle, a better approximation adjusts the C(alpha)-C'-N-H torsion angle to -2 degrees. The (15)N-(1)H(N) dipolar data do not contradict the commonly accepted motional model where angular fluctuations of the N-H bond orthogonal to the peptide plane are larger than in-plane motions, but the amplitude of angular fluctuations orthogonal the C(alpha)(i-1)-N(i)-C(alpha)(i) plane exceeds that of in-plane motions by at most 10-15 degrees. Dipolar coupling analysis indicates that for most of the GB3 backbone, the amide order parameters, S, are highly homogeneous and vary by less than +/-7%. Evaluation of the H(alpha) proton positions indicates that the average C(alpha)-H(alpha) vector orientation deviates by less than 1 degrees from the direction that makes ideal tetrahedral angles with the C(alpha)-C(beta) and C(alpha)-N vectors.  相似文献   

3.
Truncation by the presence of many short-range residual dipolar couplings (RDCs) hinders the observation of long-range RDCs in weakly aligned biomacromolecules. Perdeuteration of proteins followed by reprotonation of labile hydrogen positions greatly alleviates this problem. Here we show that for small perdeuterated proteins, a large number (up to 10 in protein G) of long-range RDCs to 13C and 1HN can be observed from individual amide protons. The 1HN <--> 13C RDCs comprise correlations to 13Calpha, 13Cbeta, and 13C' nuclei of the same and the preceding amino acid, as well as 13C' nuclei of hydrogen-bonded amino acids. The accuracy of the coupling constants is very high and defines individual internuclear distances to within few picometers. Deviations between measured RDC values and values predicted from the 1.1 A crystal structure of protein G are mainly found in two surface-exposed loop regions. The deviations show a strong correlation to the B-factor of the crystal structure.  相似文献   

4.
Use of partial or selective (13)C/(15)N labeling of specific amino acid residues in a given protein to measure the values of (1)J((15)N(i),(13)C(alpha) (i)), (2)J((1)H(N),(13)C(alpha) (i)), (2)J((15)N(i),(13)C(alpha) (i-1)), (1)J((15)N(i),(13)C'(i-1)) and (2)J((1)H(N),(13)C'(i-1)) is described. This was achieved by recording a sensitivity-enhanced 2D [(15)N-(1)H] HSQC experiment, without mixing the spin states of C(alpha) and C' during the course of entire experiment.  相似文献   

5.
1H, 13C and 15N NMR chemical shifts and couplings (n)J(H,C) in DMSO-d(6) at 30 degrees C have been determined for 1,2-diaryl-(4E)-arylidene-2-imidazolin-5-one derivatives 1-27. Their chemical shift assignments are based on PFG DQF 1H,1H COSY, PFG 1H,13C HMQC as well as PFG 1H,13C and 1H,15N HMBC experiments. For compounds 1-10 including aryl fluorine substituent(s) also the couplings (n)J(F,C) (n = 1 - 4) are reported.  相似文献   

6.
We demonstrate constraint of peptide backbone and side-chain conformation with 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift, magic-angle spinning NMR experiments. In these experiments, polarization is transferred from (15)N[i] by ramped SPECIFIC cross polarization to the (13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1] resonances and evolves coherently under the correlated (1)H-(15)N and (1)H-(13)C dipolar couplings. The resulting set of frequency-labeled (15)N(1)H-(13)C(1)H dipolar spectra depend strongly upon the molecular torsion angles phi[i], chi1[i], and psi[i - 1]. To interpret the data with high precision, we considered the effects of weakly coupled protons and differential relaxation of proton coherences via an average Liouvillian theory formalism for multispin clusters and employed average Hamiltonian theory to describe the transfer of (15)N polarization to three coupled (13)C spins ((13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1]). Degeneracies in the conformational solution space were minimized by combining data from multiple (15)N(1)H-(13)C(1)H line shapes and analogous data from other 3D (1)H-(13)C(alpha)-(13)C(beta)-(1)H (chi1), (15)N-(13)C(alpha)-(13)C'-(15)N (psi), and (1)H-(15)N[i]-(15)N[i + 1]-(1)H (phi, psi) experiments. The method is demonstrated here with studies of the uniformly (13)C,(15)N-labeled solid tripeptide N-formyl-Met-Leu-Phe-OH, where the combined data constrains a total of eight torsion angles (three phi, three chi1, and two psi): phi(Met) = -146 degrees, psi(Met) = 159 degrees, chi1(Met) = -85 degrees, phi(Leu) = -90 degrees, psi(Leu) = -40 degrees, chi1(Leu) = -59 degrees, phi(Phe) = -166 degrees, and chi1(Phe) = 56 degrees. The high sensitivity and dynamic range of the 3D experiments and the data analysis methods provided here will permit immediate application to larger peptides and proteins when sufficient resolution is available in the (15)N-(13)C chemical shift correlation spectra.  相似文献   

7.
Human normal adult hemoglobin (Hb A) is a tetrameric protein molecule of ~64 kDa consisting of two identical -chains and two identical -chains of 141 and 146 amino acid residues each and four bound heme moieties. In the oxygen-free form of Hb A, also known as deoxyhemoglobin A (deoxy-Hb A), the hemes are paramagnetic with S = 2. We have measured the one-bond spin-spin couplings (1JNH + 1DNH) on (15N,2H)-labeled deoxy-Hb A in solution as a function of magnetic field strengths from 11.7 to 21.1 T and found that these couplings are linearly proportional to the square of the magnetic field. This field dependence provides an opportunity to extract the residual dipolar couplings (RDCs, 1DNH) and, thus, to compare predictions about the solution structure of deoxy-Hb A to crystal structures for this molecule. Such comparison is essential for our understanding of the structure, dynamics, and function of this allosteric protein under conditions close to the physiological state. This report illustrates the usefulness of using the magnetic-field dependent RDCs to determine the solution structure of a large paramagnetic protein. This method is especially valuable for those proteins whose structures must be determined in an oxygen-free environment.  相似文献   

8.
G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.  相似文献   

9.
10.
A novel iterative procedure is described that allows both the orientation and dynamics of internuclear bond vectors to be determined from direct interpretation of NMR dipolar couplings, measured under at least three orthogonal alignment conditions. If five orthogonal alignments are available, the approach also yields information on the degree of motional anisotropy and the direction in which the largest amplitude internal motion of each bond vector takes place. The method is demonstrated for the backbone (15)N-(1)H, (13)C(alpha)-(1)H(alpha), and (13)C(alpha)-13C' interactions in the previously well-studied protein domain GB3, dissolved in a liquid crystalline suspension of filamentous phage Pf1. Alignment variation is achieved by using conservative mutations of charged surface residues. Results indicate remarkably uniform backbone dynamics, with amplitudes that agree well with those of previous (15)N relaxation studies for most residues involved in elements of secondary structure, but larger amplitude dynamics than those found by (15)N relaxation for residues in loop and turn regions. In agreement with a previous analysis of dipolar couplings, the N-H bonds in the second beta-strand, which is involved in antibody recognition, show elevated dynamics with largest amplitudes orthogonal to the chain direction.  相似文献   

11.
TROSY-based HN(CO)CA 2D and 3D pulse schemes are presented for measurement of (13)C(alpha)-(13)C(beta) dipolar couplings in high molecular weight (15)N,(13)C,(2)H-labeled proteins. In one approach, (13)C(alpha)-(13)C(beta) dipolar couplings are obtained directly from the time modulation of cross-peak intensities in a set of 2D (15)N-(1)HN correlated spectra recorded in both the presence and absence of aligning media. In a second approach 3D data sets are recorded with (13)C(alpha)-(13)C(beta) couplings encoded in a frequency dimension. The utility of the experiments is demonstrated with an application to an (15)N,(13)C,(2)H-labeled sample of the ligand free form of maltose binding protein. A comparison of experimental dipolar couplings with those predicted from the X-ray structure of the apo form of this two-domain protein establishes that the relative orientation of the domains in solution and in the crystal state are very similar. This is in contrast to the situation for maltose binding protein in complex with beta-cyclodextrin where the solution structure can be generated from the crystal state via a 11 degrees domain closure.  相似文献   

12.
We describe a theoretical framework for understanding the heteronuclear version of the third spin assisted recoupling polarization transfer mechanism and demonstrate its potential for detecting long-distance intramolecular and intermolecular (15)N-(13)C contacts in biomolecular systems. The pulse sequence, proton assisted insensitive nuclei cross polarization (PAIN-CP) relies on a cross term between (1)H-(15)N and (1)H-(13)C dipolar couplings to mediate zero- and∕or double-quantum (15)N-(13)C recoupling. In particular, using average Hamiltonian theory we derive effective Hamiltonians for PAIN-CP and show that the transfer is mediated by trilinear terms of the form N(±)C(?)H(z) (ZQ) or N(±)C(±)H(z) (DQ) depending on the rf field strengths employed. We use analytical and numerical simulations to explain the structure of the PAIN-CP optimization maps and to delineate the appropriate matching conditions. We also detail the dependence of the PAIN-CP polarization transfer with respect to local molecular geometry and explain the observed reduction in dipolar truncation. In addition, we demonstrate the utility of PAIN-CP in structural studies with (15)N-(13)C spectra of two uniformly (13)C,(15)N labeled model microcrystalline proteins-GB1, a 56 amino acid peptide, and Crh, a 85 amino acid domain swapped dimer (MW=2×10.4 kDa). The spectra acquired at high magic angle spinning frequencies (ω(r)∕2π>20 kHz) and magnetic fields (ω(0H)∕2π=700-900 MHz) using moderate rf fields, yield multiple long-distance intramonomer and intermonomer (15)N-(13)C contacts. We use these distance restraints, in combination with the available x-ray structure as a homology model, to perform a calculation of the monomer subunit of the Crh protein.  相似文献   

13.
Knowledge of chemical shift-structure relationships could greatly facilitate the NMR chemical shift assignment and structure refinement processes that occur during peptide/protein structure determination via NMR spectroscopy. To determine whether such correlations exist for polar side chain containing amino acid residues the serine dipeptide model, For-L-Ser-NH(2), was studied. Using the GIAO-RHF/6-31+G(d) and GIAO-RHF/TZ2P levels of theory the NMR chemical shifts of all hydrogen ((1)H(N), (1)H(alpha), (1)H(beta1), (1)H(beta2)), carbon ((13)C(alpha), (13)C(beta), (13)C') and nitrogen ((15)N) atoms have been computed for all 44 stable conformers of For-L-Ser-NH(2). An attempt was made to establish correlation between chemical shift of each nucleus and the major conformational variables (omega(0), phi, psi, omega(1), chi,(1) and chi(2)). At both levels of theory a linear correlation can be observed between (1)H(alpha)/phi, (13)C(alpha)/phi, and (13)C(alpha)/psi. These results indicate that the backbone and side-chain structures of For-L-Ser-NH(2) have a strong influence on its chemical shifts.  相似文献   

14.
Residual dipolar couplings (RDCs) are amongst the most powerful NMR parameters for organic structure elucidation. In order to maximize their effectiveness in increasingly complex cases such as flexible compounds, a maximum of RDCs between nuclei sampling a large distribution of orientations is needed, including sign information. For this, the easily accessible one-bond 1H–13C RDCs alone often fall short. Long-range 1H–1H RDCs are both abundant and typically sample highly complementary orientations, but accessing them in a sign-sensitive way has been severely obstructed due to the overflow of 1H–1H couplings. Here, we present a generally applicable strategy that allows the measurement of a large number of 1H–1H RDCs, including their signs, which is based on a combination of an improved PSYCHEDELIC method and a new selective constant-time β-COSY experiment. The potential of 1H–1H RDCs to better determine molecular alignment and to discriminate between enantiomers and diastereomers is demonstrated.  相似文献   

15.
13C-only spectroscopy was used to measure multiple residual (13)C-(13)C dipolar couplings (RDCs) in uniformly deuterated and (13)C-labeled proteins. We demonstrate that (13)C-start and (13)C-observe spectra can be routinely used to measure an extensive set of the side-chain residual (13)C-(13)C dipolar couplings upon partial alignment of human ubiquitin in the presence of bacteriophages Pf1. We establish that, among different broadband polarization transfer schemes, the FLOPSY family can be used to exchange magnetization between a J coupled network of spins while largely decoupling dipolar interactions between these spins. An excellent correlation between measured RDCs and the 3D structure of the protein was observed, indicating a potential use of the (13)C-(13)C RDCs in the structure determination of perdeuterated proteins.  相似文献   

16.
A sensitive 3D NMR pulse scheme, (H)C(CA)NH-COSY, is presented for the assignment of (13)C(delta)(1) Ile chemical shifts in large perdeuterated, methyl-protonated proteins. The nonlinearity of branched amino acids, such as Ile, significantly degrades the quality of TOCSY schemes which transfer magnetization from methyl carbons to the backbone (13)C(alpha) positions, and in applications to high molecular weight proteins (correlation times on the order of 40-50 ns), this compromises the sensitivity of spectra used for methyl assignment. The experiment presented utilizes COSY-based transfer steps and refocuses undesirable (13)C-(13)C scalar couplings that degrade the efficiency of TOCSY transfers. The (H)C(CA)NH-COSY scheme is tested on an (15)N,(13)C,(2)H-[Leu, Val, Ile (delta 1 only)]-methyl-protonated maltose binding protein (MBP)/beta-cyclodextrin complex at 5 degrees C (molecular tumbling time 46 +/- 2 ns), facilitating the assignment of (13)C(delta 1) chemical shifts for 18 of the 19 Ile residues for which backbone assignments were previously obtained. Both sensitivity and resolution of the resulting spectra are shown to be significantly better than those for a similar TOCSY-based approach.  相似文献   

17.
High‐spin FeII–alkyl complexes with bis(pyridylimino)isoindolato ligands were synthesized and their paramagnetic 1H and 13C NMR spectra were analyzed comprehensively. The experimental 13C—1H coupling values are temperature (T?1)‐ as well as magnetic‐field (B2)‐dependent and deviate considerably from typical scalar 1JCH couplings constants. This deviation is attributed to residual dipolar couplings (RDCs), which arise from partial alignment of the complexes in the presence of a strong magnetic field. The analysis of the experimental RDCs allows an unambiguous assignment of all 13C NMR resonances and, additionally, a structural refinement of the conformation of the complexes in solution. Moreover the RDCs can be used for the analysis of the alignment tensor and hence the tensor of the anisotropy of the magnetic susceptibility.  相似文献   

18.
Residual dipolar couplings (RDCs) are amongst the most powerful NMR parameters for organic structure elucidation. In order to maximize their effectiveness in increasingly complex cases such as flexible compounds, a maximum of RDCs between nuclei sampling a large distribution of orientations is needed, including sign information. For this, the easily accessible one‐bond 1H–13C RDCs alone often fall short. Long‐range 1H–1H RDCs are both abundant and typically sample highly complementary orientations, but accessing them in a sign‐sensitive way has been severely obstructed due to the overflow of 1H–1H couplings. Here, we present a generally applicable strategy that allows the measurement of a large number of 1H–1H RDCs, including their signs, which is based on a combination of an improved PSYCHEDELIC method and a new selective constant‐time β‐COSY experiment. The potential of 1H–1H RDCs to better determine molecular alignment and to discriminate between enantiomers and diastereomers is demonstrated.  相似文献   

19.
Characteristic H-bonding patterns define secondary structure in proteins and nucleic acids. We show that similar patterns apply for α2-8 sialic acid (SiA) in H(2)O and that H-bonds define its structure. A (15)N,(13)C α2-8 SiA tetramer, (SiA)(4), was used as a model system for the polymer. At 263 K, we detected intra-residue through-H-bond J couplings between (15)N and C8 for residues R-I-R-III of the tetramer, indicating H-bonds between the (15)N's and the O8's of these residues. Additional J couplings between the (15)N's and C2's of the adjacent residues confirm the putative H-bonds. NH groups showing this long-range correlation also experience slower (1)H/(2)H exchange. Additionally, detection of couplings between H7 and C2 for R-II and R-III implies that the conformations of the linkers between these residues are different than in the monomers. These structural elements are consistent with two left-handed helical models: 2 residues/turn (2(4) helix) and 4 residues/turn (1(4) helix). To discriminate between models, we resorted to (1)H,(1)H NOEs. The 2(4) helical model is in better agreement with the experimental data. We provide direct evidence of H-bonding for (SiA)(4) and show how H-bonds can be a determining factor for shaping its 3D structure.  相似文献   

20.
High-level deuteration is a prerequisite for the study of high molecular weight systems using liquid-state NMR. Here, we present new experiments for the measurement of proton-proton dipolar couplings in CH(2)D methyl groups of (13)C labeled, highly deuterated (70-80%) proteins. (1)H-(1)H residual dipolar couplings (RDCs) have been measured in two alignment media for 57 out of 70 possible methyl containing residues in the 167-residue flavodoxin-like domain of the E. coli sulfite reductase. These data yield information on the orientation of the methyl symmetry axis with respect to the molecular alignment frame. The alignment tensor characteristics were obtained very accurately from a set of backbone RDCs measured on the same protein sample. To demonstrate that accurate structural information is obtained from these data, the measured methyl RDCs for Valine residues are analyzed in terms of chi(1) torsion angles and stereospecific assignment of the prochiral methyl groups. On the basis of the previously determined backbone solution structure of this protein, the methyl RDC data proved sufficient to determine the chi(1) torsion angles in seven out of nine valines, assuming a single-rotamer model. Methyl RDCs are complementary to other NMR data, for example, methyl-methyl NOE, to determine side chain conformation in high molecular weight systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号