共查询到20条相似文献,搜索用时 15 毫秒
1.
Lapsley Miller JA Marshall L Heller LM Hughes LM 《The Journal of the Acoustical Society of America》2006,120(1):280-296
In a longitudinal study with 338 volunteers, audiometric thresholds and otoacoustic emissions were measured before and after 6 months of noise exposure on an aircraft carrier. While the average amplitudes of the otoacoustic emissions decreased significantly, the average audiometric thresholds did not change. Furthermore, there were no significant correlations between changes in audiometric thresholds and changes in otoacoustic emissions. Changes in transient-evoked otoacoustic emissions and distortion-product otoacoustic emissions were moderately correlated. Eighteen ears acquired permanent audiometric threshold shifts. Only one-third of those ears showed significant otoacoustic emission shifts that mirrored their permanent threshold shifts. A Bayesian analysis indicated that permanent threshold shift status following a deployment was predicted by baseline low-level or absent otoacoustic emissions. The best predictor was transient-evoked otoacoustic emission amplitude in the 4-kHz half-octave frequency band, with risk increasing more than sixfold from approximately 3% to 20% as the emission amplitude decreased. It is possible that the otoacoustic emissions indicated noise-induced changes in the inner ear, undetected by audiometric tests. Otoacoustic emissions may therefore be a diagnostic predictor for noise-induced-hearing-loss risk. 相似文献
2.
Z Joachims W Babisch H Ising T Günther M Handrock 《The Journal of the Acoustical Society of America》1983,74(1):104-108
Noise-induced hearing loss (NIHL) is significantly greater in rats fed a magnesium-deficient diet than in rats on a magnesium-rich diet. The hearing loss was found to be negatively correlated with the magnesium concentration of the perilymph. It is suggested that also in man, the magnesium concentration in the perilymph may be of importance in determining susceptibility to NIHL. 相似文献
3.
Sisto R Chelotti S Moriconi L Pellegrini S Citroni A Monechi V Gaeta R Pinto I Stacchini N Moleti A 《The Journal of the Acoustical Society of America》2007,122(1):387-401
With the aim of investigating the capability of otoacoustic emission (OAE) in the detection of low levels of noise-induced hearing loss, audiometric and otoacoustic data of young workers (age: 18-35) exposed to different levels of industrial noise have been recorded. These subjects are participating in a long-term longitudinal study, in which audiometric, exposure (both professional and extra-professional), and OAE data (transient evoked and distortion product) will be collected for a period of several years. All measurements have been performed, during routine occupational health surveillance, with a standard clinical apparatus and acquisition procedure, which can be easily used in the occupational safety practice. The first study was focused on the correlation between transient evoked OAE signal-to-noise ratio and distortion product (DPOAE) OAE level and the audiometric threshold, investigating the causes of the rather large intersubject variability of the OAE levels. The data analysis has shown that, if both OAE data and audiometric data are averaged over a sufficiently large bandwidth, the correlation between DPOAE levels and audiometric hearing threshold is sufficient to design OAE-based diagnostic tests with good sensitivity and specificity also in a very mild hearing loss range, between 10 and 20 dB. 相似文献
4.
5.
Energy-independent factors influencing noise-induced hearing loss in the chinchilla model. 总被引:2,自引:0,他引:2
The effects on hearing and the sensory cell population of four continuous, non-Gaussian noise exposures each having an A-weighted L(eq)=100 dB SPL were compared to the effects of an energy-equivalent Gaussian noise. The non-Gaussian noise conditions were characterized by the statistical metric, kurtosis (beta), computed on the unfiltered, beta(t), and the filtered, beta(f), time-domain signals. The chinchilla (n=58) was used as the animal model. Hearing thresholds were estimated using auditory-evoked potentials (AEP) recorded from the inferior colliculus and sensory cell populations were obtained from surface preparation histology. Despite equivalent exposure energies, the four non-Gaussian conditions produced considerably greater hearing and sensory cell loss than did the Gaussian condition. The magnitude of this excess trauma produced by the non-Gaussian noise was dependent on the frequency content, but not on the average energy content of the impacts which gave the noise its non-Gaussian character. These results indicate that beta(t) is an appropriate index of the increased hazard of exposure to non-Gaussian noises and that beta(f) may be useful in the prediction of the place-specific additional outer hair cell loss produced by non-Gaussian exposures. The results also suggest that energy-based metrics, while necessary for the prediction of noise-induced hearing loss, are not sufficient. 相似文献
6.
D.W. Robinson 《Journal of sound and vibration》1983,90(1):103-127
For the measurement of industrial noise in hearing conservation, majority usage including international standard practice favours the A-weighting. Any change would have important practical consequences and wide administrative repercussions, but direct validation of this frequency weighting through comparisons of persistent threshold shift (PTS) is lacking. Data from the study of hearing and noise in industry by Burns and Robinson are re-examined, paying particular attention to the age and noise exposure equivalence of groups of subjects classified by spectrum slope and shape. The results for 101 subjects exposed to 47 different noises fail to reveal significant advantage of the A-weighting over other standardized frequency weightings, a conclusion which may be read as a justification for continued use of the former. The real lesson to be learnt from this analysis is that the possibility of clear-cut determination of an optimum frequency weighting is remote. It would be attainable only through a more extensive bank of data of high reliability covering a wider spectral range, and this does not appear to exist at present. 相似文献
7.
Prince MM 《The Journal of the Acoustical Society of America》2002,112(2):557-567
This paper presents an analysis of hearing threshold levels among 2066 white male workers employed in various U.S. industries studied in the 1968-72 NIOSH Occupational Noise and Hearing Survey (ONHS). The distribution of hearing threshold levels (HTL) is examined in relation to various risk factors (age, prior occupational noise, medical conditions) for hearing loss among a population of noise exposed and control (low noise-exposed) industrial workers. Previous analyses of a subset of these data from the ONHS focused on 1172 highly "screened" workers. An additional 894 male workers (609 noise-exposed and 285 controls), who were excluded for various reasons (i.e., nonoccupational noise exposure, otologic or medical conditions affecting hearing, prior occupational noise exposure) have been added to examine hearing loss in an unscreened population. Data are analyzed by age, duration of exposure, and sound level (8-h TWA) by individual test frequency. Results indicate that hearing threshold levels are higher among unscreened noise-exposed and control workers relative to screened workers. Analysis of risk factors such as nonoccupational noise exposure, medical conditions, and type of industry among unscreened controls indicated that these factors were not significantly associated with increased mean HTLs or risk of material impairment over and above what is expected due to age. Age-specific mean hearing threshold levels (and percentiles of the distribution) among the unscreened ONHS control population may be used as a comparison population of low-noise exposed white male industrial workers for evaluating the effectiveness of hearing conservation programs for workers less than 55 years of age. To make valid inferences regarding occupational noise-induced hearing loss, it is important to use hearing data from reference (control) populations that are similar with respect to the degree of subject screening, type of work force (blue vs white collar), and the distribution of other risk factors for hearing loss. 相似文献
8.
Prince MM Gilbert SJ Smith RJ Stayner LT 《The Journal of the Acoustical Society of America》2003,113(2):871-880
Variability in background risk and distribution of various risk factors for hearing loss may explain some of the diversity in excess risk of noise-induced hearing loss (NIHL). This paper examines the impact of various risk factors on excess risk estimates of NIHL using data from the 1968-1972 NIOSH Occupational Noise and Hearing Survey (ONHS). Previous analyses of a subset of these data focused on 1172 highly "screened" workers. In the current analysis, an additional 894 white males (609 noise-exposed and 285 controls), who were excluded for various reasons (i.e., nonoccupational noise exposure, otologic or medical conditions affecting hearing, prior occupational noise exposure) have been added 2066) to assess excess risk of noise-induced material impairment in an unscreened population. Data are analyzed by age, duration of exposure, and sound level (8-h TWA) for four different definitions of noise-induced hearing impairment, defined as the binaural pure-tone average (PTA) hearing threshold level greater than 25 dB for the following frequencies: (a) 1-4 kHz (PTA1234), (b) 1-3 kHz (PTA123), (c) 0.5, 1, and 2 kHz (PTA512), and (d) 3, 4, and 6 kHz (PTA346). Results indicate that populations with higher background risks of hearing loss may show lower excess risks attributable to noise relative to highly screened populations. Estimates of lifetime excess risk of hearing impairment were found to be significantly different between screened and unscreened population for noise levels greater than 90 dBA. Predicted age-related risk of material hearing impairment in the ONHS unscreened population was similar to that predicted from Annex B and C of ANSI S3.44 for ages less than 60 years. Results underscore the importance of understanding differential risk patterns for hearing loss and the use of appropriate reference (control) populations when evaluating risk of noise-induced hearing impairment among contemporary industrial populations. 相似文献
9.
The effects of external- and middle-ear filtering on auditory threshold and noise-induced hearing loss 总被引:2,自引:0,他引:2
J J Rosowski 《The Journal of the Acoustical Society of America》1991,90(1):124-135
A model of external- and middle-ear function is described that uses existing data to quantify the flow of sound power from the environment to the cochlea of humans, cats, and chinchillas. This model estimates the sound power produced at the entrance of the cochlea by an environmental sound stimulus, and can be used to predict the shape of the auditory threshold function and the relative potency of various traumatic acoustic stimuli. The shapes of the predicted and measured threshold functions in the three species are similar in best frequency, bandwidth, and low-frequency slope, and the model accurately predicts the hypersensitivity of the middle-frequency regions of the cochlea to acoustic trauma. The model assumes that the mechanics of the middle-ear system are linear even at high stimulus levels and does not include the effects of either middle-ear or cochlear efferent loops. The effects of these simplifications on the model are discussed as are the implications of the model results for hearing protection and damage risk criteria. 相似文献
10.
The effects of the amplitude distribution of equal energy exposures on noise-induced hearing loss: the kurtosis metric 总被引:3,自引:0,他引:3
Seventeen groups of chinchillas with 11 to 16 animals/group (sigmaN = 207) were exposed for 5 days to either a Gaussian (G) noise or 1 of 16 different non-Gaussian (non-G) noises at 100 dB(A) SPL. All exposures had the same total energy and approximately the same flat spectrum but their statistical properties were varied to yield a series of exposure conditions that varied across a continuum from G through various non-G conditions to pure impact noise exposures. The non-G character of the noise was produced by inserting high level transients (impacts or noise bursts) into the otherwise G noise. The peak SPL of the transients, their bandwidth, and the intertransient intervals were varied, as was the rms level of the G noise. The statistical metric, kurtosis (beta), computed on the unfiltered noise beta(t), was varied 3 < or = beta(t) < or = 105. Brainstem auditory evoked responses were used to estimate hearing thresholds and surface preparation histology was used to determine sensory cell loss. Trauma, as measured by asymptotic and permanent threshold shifts (ATS, PTS) and by sensory cell loss, was greater for all of the non-G exposure conditions. Permanent effects of the exposures increased as beta(t) increased and reached an asymptote at beta(t) approximately 40. For beta(t) > 40 varying the interval or peak histograms did not alter the level of trauma, suggesting that, in the chinchilla model, for beta(t) > 40 an energy metric may be effective in evaluating the potential of non-G noise environments to produce hearing loss. Reducing the probability of a transient occurring could reduce the permanent effects of the non-G exposures. These results lend support to those standards documents that use an energy metric for gauging the hazard of exposure but only after applying a "correction factor" when high level transients are present. Computing beta on the filtered noise signal [beta(f)] provides a frequency specific metric for the non-G noises that is correlated with the additional frequency specific outer hair cell loss produced by the non-G noise. The data from the abundant and varied exposure conditions show that the kurtosis of the amplitude distribution of a noise environment is an important variable in determining the hazards to hearing posed by non-Gaussian noise environments. 相似文献
11.
G F Smoorenburg 《The Journal of the Acoustical Society of America》1992,91(1):421-437
Tone thresholds and speech-reception thresholds were measured in 200 individuals (400 ears) with noise-induced hearing loss. The speech-reception thresholds were measured in a quiet condition and in noise with a speech spectrum at levels of 35, 50, 65, and 80 dBA. The tone audiograms could be described by three principal components: hearing loss in the regions above 3 kHz, from 1 to 3 kHz and below 1 kHz; the speech thresholds could be described by two components: speech reception in quiet and speech reception in noise at 50-80 dBA. Hearing loss above 1 kHz was related to speech reception in noise; hearing loss at and below 1 kHz to speech reception in quiet. The correlation between the speech thresholds in quiet and in noise was only R = 0.45. An adequate predictor of the speech threshold in noise, the primary factor in the hearing handicap, was the pure-tone average at 2 and 4 kHz (PTA2,4, R = 0.72). The minimum value of the prediction error for any tone-audiometric predictor of this speech threshold was 1.2 dB (standard deviation). The prediction could not be improved by taking into account the critical ratio for low-frequency noise nor by its upward spread of masking. The prediction error is due to measurement error and to a factor common to both ears. The latter factor is ascribed to cognitive skill in speech reception. Hearing loss above 10 to 15 dB HL (hearing level) already shows an effect on the speech threshold in noise, a noticeable handicap is found at PTA2,4 = 30 dB HL. 相似文献
12.
Aircraft noise measurements were recorded at the residential areas in the vicinity of Kadena Air Base, Okinawa in 1968 and 1972 at the time of the Vietnam war. The estimated equivalent continuous A-weighted sound pressure level LAeq for 24 h was 85 dB.The time history of sound level during 24 h was estimated from the measurement conducted in 1968, and the sound level was converted into the spectrum level at the centre frequency of the critical band of temporary threshold shift (TTS) using the results of spectrum analysis of aircraft noise operated at the airfield. With the information of spectrum level and its time history, TTS was calculated as a function of time and level change. The permanent threshold shift was also calculated by means of Robinson's method and ISO's method. The results indicate the noise exposure around Kadena Air Base was hazardous to hearing and is likely to have caused hearing loss to people living in its vicinity. 相似文献
13.
The speech understanding of persons with sloping high-frequency (HF) hearing impairment (HI) was compared to normal hearing (NH) controls and previous research on persons with "flat" losses [Hornsby and Ricketts (2003). J. Acoust. Soc. Am. 113, 1706-1717] to examine how hearing loss configuration affects the contribution of speech information in various frequency regions. Speech understanding was assessed at multiple low- and high-pass filter cutoff frequencies. Crossover frequencies, defined as the cutoff frequencies at which low- and high-pass filtering yielded equivalent performance, were significantly lower for the sloping HI, compared to NH, group suggesting that HF HI limits the utility of HF speech information. Speech intelligibility index calculations suggest this limited utility was not due simply to reduced audibility but also to the negative effects of high presentation levels and a poorer-than-normal use of speech information in the frequency region with the greatest hearing loss (the HF regions). This deficit was comparable, however, to that seen in low-frequency regions of persons with similar HF thresholds and "flat" hearing losses suggesting that sensorineural HI results in a "uniform," rather than frequency-specific, deficit in speech understanding, at least for persons with HF thresholds up to 60-80 dB HL. 相似文献
14.
The energy spectrum of an impulse: its relation to hearing loss 总被引:2,自引:0,他引:2
R P Hamernik W A Ahroon K D Hsueh 《The Journal of the Acoustical Society of America》1991,90(1):197-204
Permanent threshold shifts obtained from 242 chinchillas that were exposed to various impulse noise paradigms have been related to the energy spectra of the impulses. The impulses were generated by three different shock tubes that produced impulse noise spectra whose A-weighted energies showed peaks at 0.25, 1, and 2 kHz. The results show that there is an increasing susceptibility to NIPTS as the audiometric test frequency increases from 0.5 to 16 kHz. This increase in susceptibility to NIPTS is further accentuated by approximately 5 to 10 dB for impulses whose spectra peak at 2 kHz. 相似文献
15.
16.
17.
Previous research with speechlike signals has suggested that upward spread of masking from the first formant (F 1) may interfere with the identification of place of articulation information signaled by changes in the upper formants. This suggestion was tested by presenting two-formant stop consonant--vowel syllables varying along a/ba--/da/--/ga/ continuum to hearing-impaired listeners grouped according to etiological basis of the disorder. The syllables were presented monaurally at 80 dB and 100 dB SPL when formant amplitudes were equal and when F 1 amplitude was reduced by 6, 12, and 18 dB. Noise-on-tone masking patterns were also generated using narrow bands of noise at 80 and 100 dB SPL to assess the extent of upward spread of masking. Upward spread of masking could be demonstrated in both speech and nonspeech tasks, irrespective of the subject's age, audiometric configuration, or etiology of hearing impairment. Attenuation of F 1 had different effects on phonetic identification in different subject groups: While listeners with noise-induced hearing loss showed substantial improvement in identifying place of articulation, upward spread of masking did not consistently account for poor place identification in other types of sensorineural hearing impairment. 相似文献
18.
The speech understanding of persons with "flat" hearing loss (HI) was compared to a normal-hearing (NH) control group to examine how hearing loss affects the contribution of speech information in various frequency regions. Speech understanding in noise was assessed at multiple low- and high-pass filter cutoff frequencies. Noise levels were chosen to ensure that the noise, rather than quiet thresholds, determined audibility. The performance of HI subjects was compared to a NH group listening at the same signal-to-noise ratio and a comparable presentation level. Although absolute speech scores for the HI group were reduced, performance improvements as the speech and noise bandwidth increased were comparable between groups. These data suggest that the presence of hearing loss results in a uniform, rather than frequency-specific, deficit in the contribution of speech information. Measures of auditory thresholds in noise and speech intelligibility index (SII) calculations were also performed. These data suggest that differences in performance between the HI and NH groups are due primarily to audibility differences between groups. Measures of auditory thresholds in noise showed the "effective masking spectrum" of the noise was greater for the HI than the NH subjects. 相似文献
19.
20.
It has been hypothesized that the wider-than-normal auditory bandwidths attributed to sensorineural hearing loss lead to a reduced ability to discriminate spectral characteristics in speech signals. In order to investigate this possibility, the minimum detectable depth of a spectral "notch" between the second (F2) and third (F3) formants of a synthetic vowel-like stimulus was determined for normal and hearing-impaired subjects. The minimum detectable notch for all subjects was surprisingly small; values obtained were much smaller than those found in actual vowels. An analysis of the stimuli based upon intensity discrimination within a single critical band predicted only small differences in performance on this task for rather large differences in the size of the auditory bandwidth. These results suggest that impairments of auditory frequency resolution in sensorineural hearing loss may not be critical in the perception of steady-state vowels. 相似文献