首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)—nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.  相似文献   

2.
Cu2S thin films deposited on glass substrate by chemical bath deposition were studied at different deposition temperatures and times. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), the Hall Effect measurement system and UV-Vis absorption spectroscopy indicate that both deposition temperature and time are important to obtain polycrystalline thin films. XRD showed that the polycrystalline Cu2S thin films have monoclinic structure. Meanwhile, the structural variations were analyzed using SEM. EDX analysis results of the thin film showed that the atomic ratio of Cu/S was close to 2:1. It was found from the Hall Effect measurement that the resistivity varied from 4.59?×?10?3 to 13.8?×?10?3 (Ω?cm). The mobility values of the Cu2S thin films having p-type conductivity varied from 15.16 to 134.6?cm2/V.s. The dark electrical resistivity measurements were studied at temperatures in the range 303–423?K. The electrical activation energies of Cu2S thin films were calculated by using Arrhenius plots, from which two different activation energy values are estimated for each thin film. Using UV-Vis absorption spectroscopy (Ultraviolet/visible), the direct and indirect allowed optical band gap values were determined to lie between 2.16 and 2.37?eV and 1.79 and 1.99?eV, respectively. In addition, the values of the refractive index (n) and the extinction coefficient (k) were determined.  相似文献   

3.
From several years the study of binary compounds has been intensified in order to find new materials for solar photocells. The development of thin film solar cells is an active area of research at this time. Much attention has been paid to the development of low cost, high efficiency thin film solar cells. CdTe is one of the suitable candidates for the production of thin film solar cells due to its ideal band gap, high absorption coefficient. The present work deals with thickness dependent study of CdTe thin films. Nanocrystalline CdTe bulk powder was synthesized by wet chemical route at pH≈11.2 using cadmium chloride and potassium telluride as starting materials. The product sample was characterized by transmission electron microscope, X-ray diffraction and scanning electron microscope. The structural characteristics studied by X-ray diffraction showed that the films are polycrystalline in nature. CdTe thin films with thickness 40, 60, 80 and 100 nm were prepared on glass substrates by using thermal evaporation onto glass substrate under a vacuum of 10−6 Torr. The optical constants (absorption coefficient, optical band gap, refractive index, extinction coefficient, real and imaginary part of dielectric constant) of CdTe thin films was studied as a function of photon energy in the wavelength region 400–2000 nm. Analysis of the optical absorption data shows that the rule of direct transitions predominates. It has been found that the absorption coefficient, refractive index (n) and extinction coefficient (k) decreases while the values of optical band gap increase with an increase in thickness from 40 to 100 nm, which can be explained qualitatively by a thickness dependence of the grain size through decrease in grain boundary barrier height with grain size.  相似文献   

4.
The optical characterization of poly (ethylene oxide)/zinc oxide thin films has been done by analyzing the absorption spectra in the spectral wavelength region 380–800 nm using a ultraviolet-spectrophotometer at room temperature. Thin film polymer composites made of poly (ethylene oxide) (PEO) containing zinc oxide (ZnO) filler concentrations (0%, 2%, 6%, 10%, and 14%) by weight were used in this study. The optical results obtained were analyzed in terms of the absorption formula for non-crystalline materials. The optical energy gap and other basic optical constants such as dielectric constants and optical conductivity were investigated and showed a clear dependence on the ZnO filler concentration. It was found that the optical energy gap for the composite films is less than that for the neat PEO, and that it decreases as the ZnO concentration increases. Enhancement of the optical conductivity was observed with increase in the ZnO concentration. Dispersion of refractive index was analyzed using the Wemple–DiDomenico single oscillator model. The refractive index (n), extinction coefficient (k), and dispersion parameters (Eo, Ed) were calculated for the investigated films.  相似文献   

5.
CdSe thin films were deposited on glass substrates using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature and ambient pressure. The relationship between refractive index and energy bandgap was investigated. The film thickness effect on the structural, morphological, optical and electrical properties of CdSe thin films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all the films exhibit polycrystalline nature with hexagonal structure and are covered well with glass substrates. The crystalline and surface properties of the films improved with increasing film thickness. The optical absorption studies revealed that the films are found to be a direct allowed transition. The energy bandgap values were changed from 1.93 to 1.87 eV depending on the film thickness. The electron effective mass (me?/mo), refractive index (n), optical static and high frequency dielectric constant (εo, ε) values were calculated by using the energy bandgap values as a function of the film thickness. The resistivity of the films changed between 106 and 102 Ω-cm with increasing film thickness at room temperature.  相似文献   

6.
Amorphous gallium nitride (a-GaN) thin films were deposited on glass substrate by electron beam evaporation technique at room temperature and high vacuum using N 2 as carrier gas. The structural properties of the films was studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). It was clear from XRD spectra and SEM study that the GaN thin films were amorphous. The absorbance, transmittance and reflectance spectra of these films were measured in the wavelength range of 300–2200 nm. The absorption coefficient spectral analysis in the sharp absorption region revealed a direct band gap of E g = 3:1 eV. The data analysis allowed the determination of the dispersive optical parameters by calculating the refractive index. The oscillator energy E 0 and the dispersion energy E d, which is a measure of the average strength of inter-band optical transition or the oscillator strength, were determined. Electrical conductivity of a-GaN was measured in a different range of temperatures. Then, activation energy of a-GaN thin films was calculated which equalled E a = 0:434 eV.  相似文献   

7.
Thin films of Cu2S on opaque gold layers and quartz substrates at the temperature of 393 K were deposited by a thermal evaporation technique. The surface morphology of the Cu2S thin films at different thicknesses is investigated by AFM. It is seen that all the films are composed of highly coordinated spherical nano-sized particles well adhered to the substrate. The transmittance and reflectance spectra of Cu2S thin films on the quartz substrate were recorded by a UV–visible spectrophotometer. The results show that the thermally evaporated Cu2S thin films have the characteristic transmittance and reflectance suitable for optoelectronic applications. The stoichiometry and surface morphology of a grown Cu2S thin film were confirmed by energy-dispersive X-ray spectroscopy (EDAX) and scanning electron microscopy (SEM), respectively. The dependence of the refractive index and the extinction coefficient on the photon energy for both the surface film and the opaque gold layer have been determined by ellipsometry. From the spectral behaviour of the absorption coefficient at two distinct absorption regions, a dual-band scheme of optical absorption for a Cu2S thin film is described. The indirect and direct edges of Cu2S are found to be about at 0.91 eV and 2.68 eV, respectively.  相似文献   

8.
Thin films of Ga10Se80Hg10 have been deposited onto a chemically cleaned Al2O3 substrates by thermal evaporation technique under vacuum. The investigated thin films are irradiated by 60Co γ-rays in the dose range of 50–150 kGy. X-ray diffraction patterns of the investigated thin films confirm the preferred crystallite growth occurs in the tetragonal phase structure. It also shows, the average crystallite size increases after γ-exposure, which indicates the crystallinity of the material increases after γ-irradiation. These results were further supported by surface morphological analysis carried out by scanning electron microscope and atomic force microscope which also shows the crystallinity of the material increases with increasing the γ-irradiation dose. The optical transmission spectra of the thin films at normal incidence were investigated in the spectral range from 190 to 1100 nm. Using the transmission spectra, the optical constants like refractive index (n) and extinction coefficient (k) were calculated based on Swanepoel’s method. The optical band gap (Eg) was also estimated using Tauc’s extrapolation procedure. The optical analysis shows: the value of optical band gap of investigated thin films decreases and the corresponding absorption coefficient increases continuously with increasing dose of γ-irradiation.  相似文献   

9.
采用强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)研究电池内部电子传输机理和电子背反应动力学特性.利用理论表达式对不同TiO2多孔膜厚度(d)的电池实验数据进行了拟合,得到了电池的吸收系数(α)、电子扩散系数(Dn)、电子寿命(τn)、电子传输时间(τd)和入射单色光光电转化效率(IPCE)等微观参数的数值.研究表明:膜薄有利于加快电子传 关键词: 染料敏化 太阳电池 IMPS/IMVS 传输  相似文献   

10.
The optical absorption of the as-deposited and γ-irradiated (doses of 3, 10, 12, 15 Mrad) thermally evaporated Se85?x Te15Sb x (x=0, 6, 9) films was measured. The refractive index n and the extinction coefficient k of the films were calculated using an analytical method developed by Zheng et al. The Urbach relation was used in the fundamental edge region to calculate the width of the band tail states. The behavior of the composition with high concentration of antimony (x=9) was attributed to the produced Se–Sb bonds and an excess of Te–Te bonds, which break the chain structure of the Se–Te system and generate defects in the film. The related optical parameters were also calculated and discussed.  相似文献   

11.
12.
In succession to our work on aluminium films a systematic database of thin-film measurements on palladium films by electron probe microanalysis is presented. This time the measurements were performed at accelerating voltages between 4 and 30 kV, again on films of six different nominal thicknesses, ranging from 100 to 3200 Å, which were deposited simultaneously on 20 different substrates, ranging between Be and Bi. The purpose of this work was to provide further systematic data on which thin-film programs can be tested. A total of 931 k ratios for the film element Pd and 913 k ratios for the various substrate elements were collected. Tests with our most recent thin-film program, TFA, based on the double Gaussian PROZA96 procedure, on this database showed even better performance than in the previous case for the aluminium films: a mean value of 0.996 for kcalc/kmeas and a relative root-mean-square deviation of 3.266% in the histogram for the film element. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Zinc telluride thin films with different thicknesses have been deposited by electron beam gun evaporation system onto glass substrates at room temperature. X-ray and electron diffraction techniques have been employed to determine the crystal structure and the particle size of the deposited films. The stoichiometry of the deposited films was confirmed by means of energy-dispersive X-ray spectrometry. The optical transmission and reflection spectrum of the deposited films have been recorded in the wavelength optical range 450-2500 nm. The variation of the optical parameters, i.e. refractive index, n, extinction coefficient, k, with thickness of the deposited films has been investigated. The refractive index dispersion in the transmission and low absorption region is adequately described by the single-oscillator model, whereby the values of the oscillator strength, oscillator position, dispersion parameter as well as the high-frequency dielectric constant were calculated for different film thickness. Graphical representations of the surface and volume energy loss function were also presented.  相似文献   

14.
The electrical and structural characteristics of hafnium oxide thin films reactively deposited from a filtered cathodic vacuum arc have been investigated. X-ray photoelectron spectroscopy was used to determine the deposition conditions (Ar/O2 ratio) which produced stoichiometric HfO2 films. Cross-sectional transmission electron microscopy showed that the micro-structure of the films was highly disordered with electron-diffraction analysis providing evidence for the presence of sub-nano-metre crystallites of the monoclinic HfO2 (P21/c) phase. Further evidence for the presence of this phase was provided by measuring the O k-edge using electron energy loss spectroscopy and comparing it with calculations performed using FEFF8.2, a multiple scattering code. Surface imaging revealed that local film damage occurred in films deposited with substrate bias voltages exceeding −200 V. The current-leakage characteristics of the HfO2 films deposited with a bias of approximately −100 V suggest that device grade HfO2 films can be produced from a filtered cathodic vacuum arc.  相似文献   

15.
Shabir Ahmad  K. Asokan 《哲学杂志》2015,95(12):1309-1320
Present work focuses on the effect of swift heavy ion (SHI) irradiation of 100 MeV F7+ ions by varying the fluencies in the range of 1 × 1012 to 1 × 1013 ions/cm2 on the morphological, structural and optical properties of polycrystalline thin films of Ga10Se90-xAlx (x = 0, 5). Thin films of ~300 nm thickness were deposited on cleaned Al2O3 substrates by thermal evaporation technique. X-ray diffraction pattern of investigated thin films shows the crystallite growth occurs in hexagonal phase structure for Ga10Se90 and tetragonal phase structure for Ga10Se85Al5. The further structural analysis carried out by Raman spectroscopy and scanning electron microscopy verifies the defects or disorder of the investigated material increases after SHI irradiation. The optical parameters absorption coefficient (α), extinction coefficient (K), optical band gap (Eg) and Urbach’s energy (EU) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200–1100 nm. It was found that the values of absorption coefficient and extinction coefficient increase while the value of optical band gap decreases with the increase in ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model.  相似文献   

16.
X-ray powder diffraction (XRD) of MgPc indicated that the material in the powder form is polycrystalline with monoclinic structure. Miller indices, h k l, values for each diffraction peak in XRD spectrum were calculated. Thermal evaporation technique was used to deposit MgPc thin films. The XRD studies were carried out for MgPc thin films where the results confirm the amorphous nature for the as-deposited films. While, polycrystalline films orientated preferentially to (1 0 0) plane with an amorphous background were obtained for films annealed at 623 K for 3 h. Optical properties of MgPc thin films were characterised by using spectrophotometric measurements of transmittance and reflectance in the spectral range from 190 to 2500 nm. The refractive index, n, and the absorption index, k, were calculated. According to the analysis of dispersion curves, the parameters, namely; the optical absorption coefficient (α), molar extinction coefficient (?molar), oscillator energy (Eos), oscillator strength (f), and electric dipole strength (q2) were also evaluated. The recorded absorption measurements in the UV-vis region show two well defined absorption bands of phthalocyanine molecule; namely the Q-band and the Soret (B-band). The Q-band showed its splitting characteristic (Davydov splitting), and ΔQ was obtained as 0.15 eV. The analysis of the spectral behaviour of the absorption coefficient (α), in the absorption region revealed indirect transitions. The transport and the near onset energy gaps were estimated as respectively 2.74 ± 0.02 and 1.34 ± 0.01 eV.  相似文献   

17.
E.R. Shaaban 《哲学杂志》2013,93(5):781-794
The optical transmittance spectrum is influenced by inhomogeneities in germanium arsenoselenide thin films. The non-uniformity of thickness, found under the present deposition conditions, gives rise to a clear shrinking of the interference fringes of the transmittance spectrum at normal incidence. Inaccuracies and even serious errors occur if the refractive index and film thickness are calculated from such a shrunken transmittance spectrum, under the unrealistic assumption that the film is uniform. The analytical expressions proposed by Swanepoel [J. Phys. E. Sci. Instrum. 17 (1984) 896] enabled derivation of the refractive index and film thickness of a wedge-shaped thin film from its shrunk transmittance spectrum. This method was applied in this study making it possible to derive the refractive index and average thickness to an accuracy better than 1%. Dispersion of the refractive index is discussed in terms of the single-oscillator Wemple–DiDomenico model [Phys. Rev. B 3 (1971) 1338]. The absorption coefficient and, thus the extinction coefficient, can be calculated from transmittance and reflectance spectra in the strong absorption region. The optical energy gap is derived from Tauc's extrapolation [Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974)]. The relationship between the optical gap and chemical composition in the Ge x As30– x Se70 (with 0 ≤ x ≤ 30) amorphous system is discussed in terms of the chemical bond approach and cohesive energy.  相似文献   

18.
Thin films of the organic semiconductor nickel phthalocyanine (NiPc) are structurally investigated using X-ray diffraction and infrared light absorption. The optical absorption and dispersion studies of nickel phthalocyanine were investigated using spectrophotometric measurements of transmittance and reflectance at normal incidence in the wavelength range 190–2100 nm. The absorption spectra recorded in the UV-VIS region show two well-defined absorption bands of the phthacyanine molecules, namely, the Soret and the Q-band. The Davydove splitting of the main absorption peak in the metal phthalocyanines correlates with the relative tendencies of the metal to out-of-plane bonding. The refractive index n as well as the absorption index k were calculated and showed an independent of the film thickness in the film thicknesses range 400–770 nm. The refractive index n showed an anomalous dispersion in the absorption region as well as normal dispersion in the transparent region. Some of the important optical absorption such as the molar extinction coefficient, the oscillator strength, the electric dipole strength have been evaluated. The analysis of the spectral behavior of the absorption coefficient α in the absorption region revealed two indirect allowed transitions with corresponding energies 2.77±0.03 and 1.66±0.02 eV. An energy band diagram has been proposed to account for the optical transitions of NiPc thin film. All previous parameters were as well obtained for films annealed at 523 K for 2 h. Discussion of the obtained results and their comparison with the previously published data are also given.  相似文献   

19.
Bismuth titanate, Bi4Ti3O12 (BTO), is a typical ferroelectric material with useful properties for optical memory, piezoelectric and electro-optic devices. Its nano-crystals were compounded by the chemical solution decomposition technique. Its structure and size were analyzed by X-ray diffraction and transmissive electron microscopy. The composite thin film of BTO nano-crystals and high transparency polymethylmethacrylate (PMMA) polymer was prepared by spin coating. The transmitted spectrum of BTO/PMMA composite thin film in 300–1500 nm was measured. The film thickness d and the optical constants of the film, such as the refractive index n, the absorption coefficient α, and the extinction coefficient κ were obtained using the data from the transmitted spectrum.  相似文献   

20.
The optical constants (absorption coefficient, refractive index, extention coefficient, real and imaginary part of dielectric constant) have been studied for a-Se80Te20−xPbx (where x = 0, 2, 6, 10) thin films as a function of photon energy in the wave length range (500–1000 nm). It has been found that the optical band gap increases while the refractive index and the extinction coefficient (k) decreases on incorporation of lead in Se–Te system. The value of absorption coefficient (α) and the extinction coefficient (k) increases, while the value of refractive index (n) decreases with incident photon energy. The results are interpreted in terms of the change in concentration of localized states due to the shift in fermi level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号