首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Young children are capable of engaging in STEM investigations when they are guided by skilled and knowledgeable teachers. However, many elementary teachers may lack sufficient STEM content knowledge and report feeling unprepared to teach STEM content. Two university faculty members in mathematics and science education, worked to cultivate and advance two designated Elementary STEM‐Focused professional development schools through a two year series of an after‐school STEM professional development (PD) Program. As the STEM PD Program progressed, it became evident that teachers were interested in and needed more experiences with the elements of the engineering process for young learners. With this in mind, several of the PD sessions were designed to highlight the engineering process and allow teachers to experience various activities that would engage young learners. To examine how this focus on the engineering process impacted the teachers in this STEM PD Program, a research study was organized during year two of the STEM PD Program. The results of this study provide evidence that this program had a positive influence on the teacher participants’ engineering teacher efficacy and implementation of engineering lessons and activities within their classrooms.  相似文献   

2.
The study was situated in a National Science Foundation supported Math Science Partnership between a private university and an urban school district. This study sought to understand the decision‐making process of elementary teachers as they implement an integrated science, technology, engineering, and mathematics (STEM) curriculum in their classrooms and the interactions that occur between the teachers and curriculum during that process. This qualitative study utilized a comparative case study approach to understanding the decision‐making process of three elementary teachers enacting the same lesson. Analysis of the interactions revealed that the teachers' perceptions of student ability, their pedagogical design capacity, and time were influences that impacted implementation. These findings have implications for STEM‐focused professional development of elementary teachers.  相似文献   

3.
The new standards for K–12 science education suggest that student learning should be more integrated and should focus on crosscutting concepts and core ideas from the areas of physical science, life science, Earth/space science, and engineering/technology. This paper describes large‐scale, urban elementary‐focused science, technology, engineering, and mathematics (STEM) collaboration between a large urban school district, various STEM‐focused community stakeholders, and a research‐focused private university. The collaboration includes the development of an integrated STEM curriculum for grade K–5 with accompanying teacher professional development. This mixed‐methodology study describes findings from focus group interviews and a survey of teachers from Title I elementary schools. Findings suggest the importance of the following critical features of professional development: (a) coherence, (b) content focus, (c) active learning, (d) collective participation, and (e) duration to the success of large‐scale STEM urban elementary school reform  相似文献   

4.
This article describes and illuminates the challenges that the authors faced as we integrated a web‐supported professional development system into elementary science methods courses housed at three different universities. Using a design experiment framework, the challenges and difficulties encountered while attempting to develop and sustain effective discussions about inquiry‐based teaching are discussed. Three main issues were identified through this analysis: (a) creating meaningful interactions for preservice teachers, (b) supporting preservice teacher reflection and articulation of their belief systems, and (c) technical, social, and institutional challenges of using a World Wide Web based professional development system. The article closes with recommendations concerning the implementation of a web‐based professional development system into elementary methods science courses and describes what appear to be successful strategies for fostering a collaborative atmosphere between teacher educators, preservice teachers, and in‐service teachers.  相似文献   

5.
The purpose of this study was to examine elementary teachers’ science teaching concerns after participating in a two‐year extensive and sustained science professional development intervention. The intervention consisted of two types of teacher professional development across two years including: (a) summer institutes (60 hours across two years) which provided training on curriculum units, inquiry‐based instructional strategies, problem‐based learning, classroom management, and technology use in the classroom; and (b) coaching (60 hours across two years) which provided teachers support in establishing an investigative classroom and assistance in the implementation of inquiry/problem‐based science units. Teacher data were collected across four different time points: prior to the intervention, after one year of intervention, after two years of intervention, and one year after completion of the intervention. Results from quantitative data supported with qualitative interviews indicated concerns among teachers changed but they were not eliminated. The findings of this study provide evidence that teachers’ concerns may not be eliminated, but with extensive support––concerns become less focused on self and more focused on students.  相似文献   

6.
Yeping Li  Rongjin Huang 《ZDM》2008,40(5):845-859
In this study, we investigated the extent of knowledge in mathematics and pedagogy that Chinese practicing elementary mathematics teachers have and what changes teaching experience may bring to their knowledge. With a sample of 18 mathematics teachers from two elementary schools, we focused on both practicing teachers’ beliefs and perceptions about their own knowledge in mathematics and pedagogy and the extent of their knowledge on the topic of fraction division. The results revealed a gap between these teachers’ limited knowledge about the curriculum they teach and their solid mathematics knowledge for teaching, as an example, fraction division. Moreover, senior teachers used more diverse strategies that are concrete in nature than junior teachers in providing procedural justifications. The results suggested that Chinese practicing teachers benefit from teaching and in-service professional development for the improvement of their mathematics knowledge for teaching but not their knowledge about mathematics curriculum.  相似文献   

7.
Preparing elementary‐level teachers to teach in alignment with the eight Next Generation Science Standards (NGSS) practices could prove to be a daunting endeavor. However, the process may be catalyzed by leveraging elements of teacher science instruction that inherently attend to the practice standards. In this study, we investigated the science instruction of three grade 3–5 elementary‐level teachers. We used observation, interviews, and surveys to determine the level to which the teachers perceived they taught and engaged in teaching science aligned with the eight NGSS practices. We found that the teachers were partially, and intrinsically implementing several of these practices in their instruction, and at the same time could not articulate the eight NGSS practices. Our results suggest there may be ample opportunity to build on the current science instruction of elementary‐level teachers to bring their instruction into alignment with the NGSS. We found that teachers’ perceive professional development, school culture, and access to additional instructional resources to be essential to their adoption of the NGSS practices.  相似文献   

8.
This paper describes the mechanism used to gain insights into the state of the art of mathematics instruction in a large urban district in order to design meaningful professional development for the teachers in the district. Surveys of close to 2,000 elementary, middle school, and high school students were collected in order to assess the instructional practices used in mathematics classes across the district. Students were questioned about the frequency of use of various instructional practices that support the meaningful learning of mathematics. These included practices such as problem solving, use of calculators and computers, group work, homework, discussions, and projects, among others. Responses were analyzed and comparisons were drawn between elementary and middle school students' responses and between middle school and high school responses. Finally, fifth‐grade student responses were compared to those of their teachers. Student responses indicated that they had fewer inquiry‐based experiences, fewer student‐to‐student interactions, and fewer opportunities to defend their answers and justify their thinking as they moved from elementary to middle school to high school. In the elementary grades students reported an overemphasis on the use of memorization of facts and procedures and sparse use of calculators. Results were interpreted and specific directions for professional development, as reported in this paper, were drawn from these data. The paper illustrates how student surveys can inform the design of professional development experiences for the teachers in a district.  相似文献   

9.
The purpose of the current study was to evaluate the impact of co‐taught integrated STEM methods instruction on preservice elementary teachers’ self‐efficacy for teaching science and mathematics within an integrated STEM framework. Two instructional methods courses (Elementary Mathematics Methods and Elementary Science Methods) were redesigned to include STEM integration components, including STEM model lessons co‐taught by a mathematics and science educator, as well as a special education colleague. Quantitative data were gathered at three time points in the semester (beginning, middle, and end) from 55 preservice teachers examining teacher self‐efficacy for integrated STEM teaching. Qualitative data were gathered from a purposeful sample of seven preservice teachers to further understand preservice teachers’ perceptions on delivering integrated STEM instruction in an elementary setting. Quantitative results showed a significant increase in teacher self‐efficacy across all three time points. Item‐level analysis revealed that self‐efficacy for tasks involving engineering and assessment (both formative and summative) were low across time points, while self‐efficacy for tasks involving technology and flexibility were consistently high. Qualitative results revealed that the preservice teachers did not feel adequately prepared by university‐level science and mathematics courses, in terms of content knowledge and integration of science and mathematics for elementary students.  相似文献   

10.
Curriculum materials can play a major role in shaping teachers’ thinking about instruction and content as well as serve as a support for teachers’ learning. With the inclusion of engineering in NGSS, many teachers may be turning to existing curriculum materials to help them infuse engineering into their science classroom, especially when they do not have the time or opportunity for professional development sessions. In this study, we identified a sample of curriculum materials freely available online to chemistry teachers trying to incorporate engineering in the topics of stoichiometry and/or energy, common topics in secondary chemistry curricula. Using qualitative coding methods, we examined what this sample had to offer the chemistry teachers in the way of developing their understanding of engineering and teaching it. Our findings indicate that within our sample there are limited existing curriculum materials to support teachers’ engineering incorporation into secondary chemistry, and the support for teachers varied in terms of content and usefulness across the materials. The materials provided procedural information for activities but lacked in supports for teacher learning and student development beyond the procedure. Implications for the enactment of NGSS in secondary science along with needs for curriculum development and teacher learning are discussed.  相似文献   

11.
This study investigated the impact of incorporating problem posing in elementary classrooms on the beliefs held by elementary teachers about mathematics and mathematics teaching. Teachers participated in a year‐long staff development project aimed at facilitating the incorporation of problem posing into their classrooms. Beliefs were examined via pre‐ and postsurvey. Results indicated a positive impact on their beliefs about mathematics and mathematics instruction. Data from open‐ended written responses verified the impact of problem posing on the teachers and their classrooms. Based on these findings, it is recommended that problem posing be incorporated into all professional learning and undergraduate education programs.  相似文献   

12.
The goal of this article is to inform professional understanding regarding preservice science teachers’ knowledge of engineering and the engineering design process. Originating as a conceptual study of the appropriateness of “knowledge as design” as a framework for conducting science teacher education to support learning related to engineering design, the findings are informed by an ongoing research project. Perkins’s theory encapsulates knowledge as design within four complementary components of the nature of design. When using the structure of Perkins’s theory as a framework for analysis of data gathered from preservice teachers conducting engineering activities within an instructional methods course for secondary science, a concurrence between teacher knowledge development and the theory emerged. Initially, the individuals, who were participants in the research, were unfamiliar with engineering as a component of science teaching and expressed a lack of knowledge of engineering. The emergence of connections between Perkins’s theory of knowledge as design and knowledge development for teaching were found when examining preservice teachers’ development of creative and systematic thinking skills within the context of engineering design activities as well as examination of their knowledge of the application of science to problem‐solving situations.  相似文献   

13.
Next Generation Science Standards (NGSS) science and engineering practices are ways of eliciting the reasoning and applying foundational ideas in science. As research has revealed barriers to states and schools adopting the NGSS, this mixed‐methods study attempts to identify characteristics of professional development (PD) that will support NGSS adoption and to improve teacher readiness. In‐service science teachers from across the nation were targeted for the survey and responses represented 38 states. Research questions included: How motivated and prepared are in‐service 7–12 teachers to use NGSS science and engineering practices? What is the profile of 7–12 in‐service teachers who are motivated and feel prepared to use NGSS science and engineering practices? The study revealed that teachers identified engineering most frequently as a PD need to improve their NGSS readiness. High school teachers rated themselves as more prepared than middle school and all teachers who use Modeling Instruction expressed higher NGSS readiness. These findings and their specificity contribute to current knowledge, and can be utilized by districts in selecting PD to support teachers in preparing to implement the NGSS successfully.  相似文献   

14.
This collective case study analyzes the use of manipulatives in math lessons developed and taught by 4 groups of elementary teachers (K‐8) involved in lesson study as part of a professional development program. The study found that in three of four lessons studied manipulative use was turned into an end in and of itself, rather than a tool, and that in the fourth lesson manipulative use hindered rather than helped student learning. These problems with manipulative use by teachers in the lessons provide helpful guidance for planning of future professional development for math teaching. Our conclusion contains recommendations for successful implementation of manipulatives for both teachers and professional developers. Most importantly, we stress the need to emphasize the link between pedagogy and content, not the specific use of manipulatives.  相似文献   

15.
With the increasing emphasis on integrating engineering into K‐12 classrooms to help meet the needs of our complex and multidisciplinary society, there is an urgent need to investigate teachers' engineering‐focused professional development experiences as they relate to teacher learning, implementation, and student achievement. This study addresses this need by examining the effects of a professional development program focused on engineering integration, and how teachers chose to implement engineering in their classrooms as a result of the professional development. 198 teachers in grades 3–6 from 43 schools in 17 districts participated in a yearlong professional development program designed to help integrate the new state science standards, with a focus on engineering, into their teaching. Posters including lesson plans and student artifacts were used to assess teachers' engineering practices and the implementation in their classrooms. Results indicated that the majority of the teachers who participated in the professional development were able to effectively implement engineering design lessons in their classrooms suggesting that the teachers' success in implementing engineering lessons in their classroom was closely related to the structure of the professional development program.  相似文献   

16.
The press to integrate mathematics and science comes from researchers, business leaders, and educators, yet research that examines ways to support teachers in relating these disciplines is scant. Using research on science and mathematics professional development, we designed a professional development project to help elementary teachers improve their teaching of mathematics and science by strategically connecting these disciplines. The purposes of this study are: (a) to identify changes in teachers' confidence and practice after participating in the professional development and (b) to identify different ways to connect mathematics and science during the professional development. We use a Likert‐scale survey to assess changes in teachers' confidence related to teaching mathematics and science. In addition, we report on a thematic analysis of teachers' written responses to open‐ended questions that probed teachers' perceived changes in practice. We analyze field notes from observations of project workshops to document different types of opportunities for connecting mathematics and science. We conclude with implications for future professional development that connects mathematics and science in meaningful ways, as well as suggestions for future research.  相似文献   

17.
We conducted a multi‐year study of specialization in elementary mathematics and/or science, using data drawn from a local sample of teachers and a nationwide sample of principals. Using the theory of planned behavior, we compare and contrast teacher and principal views and decision‐making processes related to elementary content specialization (ECS). Survey data indicate that specialist models were conceived as a way to better meet students' academic needs while relieving some of the rigorous demands placed on elementary teachers in the context of new content standards. In contrast, self‐contained classrooms were retained in elementary schools largely due to beliefs that these traditional structures provide the best social and emotional stability for students. After presentation of survey findings, we use three local case studies to present ECS at different stages of maturity (from newly enacted to well‐established), with corresponding discussion of benefits, challenges, and lessons learned. Our case study data indicate that, while newly adopted ECS models tended to face the most challenges, there may still be critical model‐specific concerns at play even when specialization has been ongoing for decades. Our findings have implications for teachers and principals, as well as researchers and professional development providers.  相似文献   

18.
Effective professional development that influences teachers’ classroom practices starts with what teachers know, understand, and do in their classroom. The Next Generation Science Standards (NGSS) challenge teachers to make changes to their classroom; to help teachers make these changes, it is necessary to know what they are doing in their classrooms just prior to NGSS adoption. An online survey was distributed to high school chemistry teachers to understand their teaching practices before NGSS was adopted as state standards. This article presents the findings of the survey in terms of the chemistry content, science and engineering practices, and engineering content currently taught in chemistry. Gaps in the current teaching practices as they relate to the standards at the time of the study and NGSS are discussed, which show a challenge for the transformation of science education, which the implementation of NGSS hopes to achieve. Implications for professional development are included.  相似文献   

19.
This study investigated the effect of a STEAM (science, technology, engineering, arts, and mathematics) methods course on elementary preservice teachers’ (PTs’) perceptions of self-efficacy to teach engineering practices. The course positioned engineering as the primary content area from which to integrate other subjects. To enhance PT’s perception of engineering self-efficacy, the course provided instruction that leveraged the following sources of self-efficacy: cognitive content mastery, cognitive pedagogical mastery, vicarious experience, verbal persuasion, and emotional state. The study also examined to what extent the various sources of self-efficacy contributed to changes in self-efficacy. Data was collected from 14 participants that included a self-efficacy survey and focus group interview. After completing the course, elementary PTs’ self-efficacy to teach engineering practices increased significantly. Qualitative data analysis revealed cognitive pedagogical mastery, vicarious experience (specifically simulated modeling), and emotional state were the most influential sources linked to positive changes in self-efficacy, with cognitive content mastery, and other forms of vicarious experience contributing, but to a lesser degree. These results suggest that teacher preparation programs can better support elementary PTs to teach engineering practices by offering additional methods courses focused on engineering, rather than providing short-term exposure to engineering practices and pedagogy in overloaded science methods courses.  相似文献   

20.
This quantitative study investigated the relationships among practicing elementary teachers’ (N = 153) beliefs about mathematics and its teaching and learning, mathematics anxiety, and instructional practices in mathematics. When viewed singly, the findings reveal the teachers with higher levels of mathematics anxiety tend to use less standards‐based instruction and those with beliefs oriented toward a problem‐solving view of mathematics reported more standards‐based teaching. A combined analysis shows that after controlling for mathematical beliefs, teaching longevity, and educational degree attainment, there is no relationship between teachers’ mathematics anxiety and instructional practices. These findings suggest a spurious relationship between anxiety and practices, with beliefs having the strongest relationship with practices. Several suggestions for positively influencing the mathematical beliefs and affect in general of elementary teachers while learning mathematics are offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号