首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
    
A new class of resonant dispersive shock waves was recently identified as solutions of the Kawahara equation— a Korteweg–de Vries (KdV) type nonlinear wave equation with third‐ and fifth‐order spatial derivatives— in the regime of nonconvex, linear dispersion. Linear resonance resulting from the third‐ and fifth‐order terms in the Kawahara equation was identified as the key ingredient for nonclassical dispersive shock wave solutions. Here, nonlinear wave (Whitham) modulation theory is used to construct approximate nonclassical traveling dispersive shock wave (TDSW) solutions of the fifth‐ order KdV equation without the third derivative term, hence without any linear resonance. A self‐similar, simple wave modulation solution of the fifth order, weakly nonlinear KdV–Whitham equations is obtained that matches a constant to a heteroclinic traveling wave via a partial dispersive shock wave so that the TDSW is interpreted as a nonlinear resonance. The modulation solution is compared with full numerical solutions, exhibiting excellent agreement. The TDSW is shown to be modulationally stable in the presence of sufficiently small third‐order dispersion. The Kawahara–Whitham modulation equations transition from hyperbolic to elliptic type for sufficiently large third‐order dispersion, which provides a possible route for the TDSW to exhibit modulational instability.  相似文献   

4.
    
In A Treatise on Electricity and Magnetism, Maxwell determines the angles of intersection for which one may use Kelvin's inversion method to obtain the perturbed electric potential upon placing intersecting spherical conductors into a region with a known potential. There are numerous modern applications utilizing this geometric construction in potential theory and hydrodynamics, and generalized circle and sphere theorems play a foundational role in this area of mathematical physics. In his work, Maxwell gives an intuitive argument for obtaining the perturbed potential based on intersecting planar conductors and a spherical inversion, and in this paper we extend his ideas to a full proof using rotational transformations and reflections. In the process, we disprove results in [Proc Lond Math Soc., 1966:3(16)] and [Stud Appl Math., 2001:106(4); Z. Angew. Math. Mech., 2001:81(8)] on boundary value problems in hydrodynamics involving intersecting circles and spheres, and we detail the angles of intersection for which these theorems are viable. Moreover, our proof recovers a special case overlooked by Maxwell for which Kelvin's inversion method may be utilized to obtain full solutions.  相似文献   

5.
    
This paper illustrates how the singularity of the wave action flux causes the Kadomtsev‐Petviashvili (KP) equation to arise naturally from the modulation of a two‐phased wavetrain, causing the dispersion to emerge from the classical Whitham modulation theory. Interestingly, the coefficients of the resulting KP are shown to be related to the associated conservation of wave action for the original wavetrain, and therefore may be obtained prior to the modulation. This provides a universal form for the KP as a dispersive reduction from any Lagrangian with the appropriate wave action flux singularity. The theory is applied to the full water wave problem with two layers of stratification, illustrating how the KP equation arises from the modulation of a uniform flow state and how its coefficients may be extracted from the system.  相似文献   

6.
    
It is found that two different celebrate models, the Korteweg de‐Vrise (KdV) equation and the Boussinesq equation, are linked to a same model equation but with different nonlocalities. The nonlocal KdV equation can be derived in two ways, via the so‐called consistent correlated bang companied by the parity and time reversal from the local KdV equation and via the parity and time reversal symmetry reduction from a coupled local KdV system which is a two‐layer fluid model. The same model can be called as the nonlocal Boussinesq system if the nonlocality is changed as only one of parity and time reversal. The nonlocal Boussinesq equation can be derived via the parity or time reversal symmetry reduction from the local Boussinesq equation. For the nonlocal Boussinesq equation, with help of the bilinear approach and recasting the multisoliton solutions of the usual Boussinesq equation to an equivalent novel form, the multisoliton solutions with even numbers and the head on interactions are obtained. However, the multisoliton solutions with odd numbers and the multisoliton solutions with even numbers but with pursuant interactions are prohibited. For the nonlocal KdV equation, the multisoliton solutions exhibit many more structures because an arbitrary odd function of can be introduced as background waves of the usual KdV equation.  相似文献   

7.
    
We consider the Isobe-Kakinuma model for two-dimensional water waves in the case of a flat bottom. The Isobe-Kakinuma model is a system of Euler-Lagrange equations for a Lagrangian approximating Luke's Lagrangian for water waves. We show theoretically the existence of a family of small amplitude solitary wave solutions to the Isobe-Kakinuma model in the long wave regime. Numerical analysis for large amplitude solitary wave solutions is also provided and suggests the existence of a solitary wave of extreme form with a sharp crest.  相似文献   

8.
    
We study nonlinear free‐surface rotational waves generated through the interaction of a vertically sheared current with a topography. Equivalently, the waves may be generated by a pressure distribution along the free surface. A forced Korteweg–de Vries equation (fKdV) is deduced incorporating these features. The weakly nonlinear, weakly dispersive reduced model is valid for small amplitude topographies. To study the effect of gradually increasing the topography amplitude, the free surface Euler equations are formulated in the presence of a variable depth and a sheared current of constant vorticity. Under constant vorticity, the harmonic velocity component is formulated in a simplified canonical domain, through the use of a conformal mapping which flattens both the free surface as well as the bottom topography. Critical, supercritical, and subcritical Froude number regimes are considered, while the bottom amplitude is gradually increased in both the irrotational and rotational wave regimes. Solutions to the fKdV model are compared to those from the Euler equations. We show that for rotational waves the critical Froude number is shifted away from 1. New stationary solutions are found and their stability tested numerically.  相似文献   

9.
    
We extend our previous results characterizing the loading properties of a diffusing passive scalar advected by a laminar shear flow in ducts and channels to more general cross‐sectional shapes, including regular polygons and smoothed corner ducts originating from deformations of ellipses. For the case of the triangle and localized, cross‐wise uniform initial distributions, short‐time skewness is calculated exactly to be positive, while long‐time asymptotics shows it to be negative. Monte Carlo simulations confirm these predictions, and document the timescale for sign change. The equilateral triangle appears to be the only regular polygon with this property—all others possess positive skewness at all times. Alternatively, closed‐form flow solutions can be constructed for smooth deformations of ellipses, and illustrate how both nonzero short‐time skewness and the possibility of multiple sign switching in time is unrelated to domain corners. Exact conditions relating the median and the skewness to the mean are developed which guarantee when the sign for the skewness implies front (more mass to the right of the mean) or back (more mass to the left of the mean) “loading” properties of the evolving tracer distribution along the pipe. Short‐ and long‐time asymptotics confirm this condition, and Monte Carlo simulations verify this at all times. The simulations are also used to examine the role of corners and boundaries on the distribution for short‐time evolution of point source , as opposed to cross‐wise uniform, initial data.  相似文献   

10.
    
We study Alfvén discontinuities for the equations of ideal compressible magnetohydrodynamics (MHD). The Alfvén discontinuity is a characteristic discontinuity for the hyperbolic system of the MHD equations but, as for shock waves, the gas crosses its front. By numerical testing of the Lopatinskii condition, we carry out spectral stability analysis, i.e. we find the parameter domains of stability and violent instability of planar Alfvén discontinuities. We also show that Alfvén discontinuities can be only weakly stable in the sense that the uniform Lopatinskii condition is never satisfied. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
    
We work on a model that has succeeded in describing real cases of coexistence of two languages within a closed community of speakers, taking into account bilingualism and incorporating a parameter to measure the distance between languages. The dynamics of this model depend on a characteristic exponent, which weighs the power of the size of a group of speakers to attract new members. So far, this model had been solved only when this characteristic exponent is greater than 1. In this article, we have managed to solve the nature of the stability of all the possible situations for this characteristic exponent, that is, when it is less or equal than 1 and covering also the situations produced when it is 0 or negative. We interpret these new situations and find that, even in such exotic scenarios, there are configurations of the resulting societies where all the languages coexist. © 2014 Wiley Periodicals, Inc. Complexity 21: 86–93, 2016  相似文献   

12.
    
We consider a two‐dimensional inviscid irrotational flow in a two layer fluid under the effects of gravity and interfacial tension. The upper fluid is bounded above by a rigid lid, and the lower fluid is bounded below by a rigid bottom. We use a spatial dynamics approach and formulate the steady Euler equations as a Hamiltonian system, where we consider the unbounded horizontal coordinate x as a time‐like coordinate. The linearization of the Hamiltonian system is studied, and bifurcation curves in the (β,α)‐plane are obtained, where α and β are two parameters. The curves depend on two additional parameters ρ and h, where ρ is the ratio of the densities and h is the ratio of the fluid depths. However, the bifurcation diagram is found to be qualitatively the same as for surface waves. In particular, we find that a Hamiltonian‐Hopf bifurcation, Hamiltonian real 1:1 resonance, and a Hamiltonian 02‐resonance occur for certain values of (β,α). Of particular interest are solitary wave solutions of the Euler equations. Such solutions correspond to homoclinic solutions of the Hamiltonian system. We investigate the parameter regimes where the Hamiltonian‐Hopf bifurcation and the Hamiltonian real 1:1 resonance occur. In both these cases, we perform a center manifold reduction of the Hamiltonian system and show that homoclinic solutions of the reduced system exist. In contrast to the case of surface waves, we find parameter values ρ and h for which the leading order nonlinear term in the reduced system vanishes. We make a detailed analysis of this phenomenon in the case of the real 1:1 resonance. We also briefly consider the Hamiltonian 02‐resonance and recover the results found by Kirrmann. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
吴建华  方颖 《应用数学和力学》1996,17(12):1085-1090
在本文中,我们用二层海模型,探讨了层化海洋中任意三维物体的二阶波浪绕射问题,给出了多色波场中二阶波浪散射势边值问题的数学提法以及基于一个弱的远场辐射条件下解的表式。同时,利用Green定理,并通过引入一个辅助势函数,我们导出了结构所受二阶波浪荷载的积分表式。结果表明,海水的层化特性对结构物所受之二阶差频波浪荷载可能具有显著的影响。  相似文献   

14.
    
Small‐amplitude expansions are utilized to discuss the mean flow induced by the reflection of a weakly nonlinear internal gravity wave beam at a uniform rigid slope, in the case where the beam planes of constant phase meet the slope at an arbitrary direction, not necessarily parallel to the isobaths, and the flow cannot be taken as two dimensional. Along the vertical, the Eulerian mean flow, due to such an oblique reflection, is equal and opposite to the Stokes drift so the Lagrangian mean flow vanishes, similar to a two‐dimensional reflection. The horizontal Eulerian mean flow, however, is controlled by the mean potential vorticity (PV) and the corresponding Lagrangian mean flow is generally nonzero, in contrast to two‐dimensional flow where PV identically vanishes. For an oblique reflection, furthermore, viscous dissipation can trigger generation of horizontal mean flow via irreversible production of mean PV, a phenomenon akin to streaming.  相似文献   

15.
Within the framework of the triple deck theory, the effect of an elastic surface on the characteristics of a wave packet generated by acoustic disturbances in a boundary layer at transonic free-stream velocities is investigated.  相似文献   

16.
    
In this paper, we study polynomials orthogonal with respect to a Pollaczek–Jacobi type weight The uniform asymptotic expansions for the monic orthogonal polynomials on the interval (0,1) and outside this interval are obtained. Moreover, near , the uniform asymptotic expansion involves Airy function as , and Bessel function of order α as in the neighborhood of , the uniform asymptotic expansion is associated with Bessel function of order β as . The recurrence coefficients and leading coefficient of the orthogonal polynomials are expressed in terms of a particular Painlevé III transcendent. We also obtain the limit of the kernel in the bulk of the spectrum. The double scaled logarithmic derivative of the Hankel determinant satisfies a σ‐form Painlevé III equation. The asymptotic analysis is based on the Deift and Zhou's steepest descent method.  相似文献   

17.
18.
A numerical algorithm is proposed for simulating the propagation of discontinuous waves over a dry bed governed by the shallow water equations in the first approximation. The algorithm is based on a modified conservation law of total momentum that takes into account the concentrated momentum loss associated with the formation of local eddy structures within the framework of the long-wave approximation. The modified conservation law involves a heuristic parameter that is chosen so as to agree with laboratory experiments. Numerical results are presented for the formation, propagation, and transformation of a discontinuous wave arising in a complete or partial (in the planned case) collapse of a dam over a bed with a horizontal or sloping bottom or a bottom with a local obstacle in the tailwater area.  相似文献   

19.
    
We compare three different ways of checking the Jacobi identity for weakly nonlocal Poisson brackets using the theory of distributions, pseudo-differential operators, and Poisson vertex algebras, respectively. We show that the three approaches lead to similar computations and same results.  相似文献   

20.
周坚 《数学进展》2006,35(5):513-538
这是一篇关于数学和物理中以导数的推广为中心交流的非正式介绍文章。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号