首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A capillary zone electrophoresis total protein assay was developed and validated in polyethylene oxide (PEO) dynamically coated capillaries. On-line large-volume sample stacking was employed. Protein samples were denatured using SDS and then injected into PEO-filled capillaries. Such treatment enabled injection of a sample volume of ??8% of the total capillary volume and stacking of protein-SDS molecules at the interface between the sample plug and the PEO plug. Results showed that SDS enhanced the sensitivity not only by protein denaturation but also by forming micelles, in which protein-SDS partitioned. Sensitivity of the method was further enhanced through using capillaries with (tenfold) extended detection pathlength. Such strategies resulted in a limit of detection of 0.26 ??g mL?1 (3.64 nM BSA). A linear relationship between protein concentration and integrated peak area was obtained over a wide concentration range (8.49?C135.87 ??g mL?1??R 2 = 0.995). The method is particularly useful for determination of total protein concentration in chromatography fractions. It overcomes low UV absorptivity of proteins, presence of UV absorbing additives and high salt content. Contrary to conventional methods for determination of protein concentration, this method does not involve an interaction with a dye. Thus, variations due to differences in surface properties among proteins or due to differences in posttranslational modifications of the same protein are eliminated. The protocol was successfully applied for the determination of the concentration of a biopharmaceutical protein rhMBP in chromatography fractions. This protein has been previously produced in milk of transgenic cows and several charge isoforms were detected.  相似文献   

2.
Polyacrylamide gel electrophoresis (PAGE) of proteins denatured with SDS (sodium dodecyl sulfate) has been used successfully to separate proteins according to their molecular mass. In spite of the extensive use of this technique, the motion of the protein-SDS complex in a polyacrylamide gel is still not understood. Here we report on the observation of the orientation (in the field direction) and relaxation of protein-SDS complexes during pulsed intermittent field PAGE experiments. The results give an indication of the stiffness of the molecules and may be useful for the development of a technique to improve the separation of large proteins using pulsed electric fields.  相似文献   

3.
Kim KH  Lee JY  Moon MH 《The Analyst》2011,136(2):388-392
Effects of protein denaturation and formation of protein-sodium dodecyl sulfate (SDS) complexes on protein separation and identification were investigated using hollow fiber flow field-flow fractionation (HF5) and nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS). Denaturation and formation of protein-SDS complexes prior to HF5 separation resulted an increase in the retention of few protein standards due to unfolding of the protein structures and complexation, yielding ~30% increase in hydrodynamic diameter. In addition, low molecular weight proteins which could be lost from the HF membrane due to the pore size limitation showed an increase of peak recovery about 2-6 folds for cytochrome C and carbonic anhydrase. In the case of proteins composed of a number of subunits, denaturation resulted in a decrease in retention due to dissociation of protein subunits. A serum proteome sample, denatured with dithiothreitol and SDS, was fractionated by HF5, and the eluting protein fractions after tryptic digestion were analyzed for protein identification using nLC-ESI-MS-MS. The resulting pools of identified proteins were found to depend on whether the serum sample was treated with or without denaturation prior to the HF5 run due to differences in the aqueous solubility of the proteins. The enhancement of protein solubility by SDS also increased the number of identified membrane proteins (54 vs. 31).  相似文献   

4.
The complexes formed between a protein (bovine serum albumin, BSA) and a surfactant (sodium dodecyl sulfate, SDS) were studied as separation carriers in electrokinetic chromatography. Selectivities different from those with either SDS or BSA alone in the background electrolyte (BGE) were obtained. Separation performances were demonstrated to be closely related to the type of complex formed, as predicted by the isotherm curve of SDS on BSA. For each composition of background electrolyte, capacity factors and resolutions were calculated. We compared the results with these complexes to electropherograms using BGE containing either BSA or SDS alone. The separation of a mixture of phenols indicate that some compositions of the BSA-SDS complexes are efficient selectors.  相似文献   

5.
The influence of beta-cyclodextrin (beta-CD) on the critical micelle concentration (CMC) of sodium dodecyl sulfate (SDS) was investigated by capillary electrophoresis using anionic chlorophenols as probe molecules at pH 7.0. The variations of the electrophoretic mobility of probe molecules as a function of surfactant concentration in both premicellar and micellar regions in the absence and presence of beta-CD was analyzed. The results indicate that, as a consequence of a strong inclusion complexation between beta-CD and SDS, the encapsulation of beta-CD with probe molecules is greatly diminished, or even vanished, in the presence of SDS. The complexes formed between beta-CD and SDS monomers exist predominantly in the form of a 1:1 stoichiometry, while the complexes with a 2:1 stoichiometry reported previously in the literature as a minor component may exist by less than 10%. The elevation of the CMC value of SDS depends not only on the concentration of beta-CD in the buffer electrolyte but also on methanol content in the sample solution. The binding constants of probe molecules to beta-CD, to surfactant molecules, and to the complexes formed between beta-CD and SDS are reported.  相似文献   

6.
A novel pH‐responsive coating technique was developed and applied to CE successfully in this paper. The coating was formed by bonding mixed opposite charge poly(acrylic acid) and poly(2‐vinylpyridine) randomly onto the inner wall of a silica capillary. The coating processes were first characterized by ellipsometry and atomic force microscopy at macroscale and microscale, respectively. Measurements of EOF were implemented to confirm the coating. Direction and velocity of EOF became controllable from negative to positive, showing a perfect sigmoidal curve as the coating net charges alternated by the pH of BGE. The control of the EOF makes it possible to analyze different kinds of small molecules, peptides, and proteins successfully in the same capillary. Results showed that the stability and reproducibility for separations of fluoroquinolone standards were satisfactory for more than a hundred separations. A series of basic and acidic protein standards were separated with admirable efficiency and minimal adsorption using both polarities. The separation of tryptic BSA digest showed that the prepared capillary has immense potential in analyzing a single sample with both acidic and basic separations, which achieved the expectation in proteomics study by CE‐MS.  相似文献   

7.
Understanding the interactions of proteins with one another serves as an important step for developing faster protein separation methods. To examine protein-protein interactions of oppositely charged proteins, fluorescently labeled albumin and poly-l-lysine were subjected to electrophoresis in agarose gels, in which the cationic albumin and the anionic poly-L-lysine were allowed to migrate toward each other and interact. Fluorescence microscopy was used to image fluorescently tagged proteins in the gel. The secondary structure of the proteins in solution was studied using conventional FTIR spectroscopy. Results showed that sharp interfaces were formed where FITC tagged albumin met poly-L-lysine and that the interfaces did not migrate after they had been formed. The position of the interface in the gel was found to be linearly dependent upon the relative concentration of the proteins. The formation of the interface also depended upon the fluorescent tag attached to the protein. The size of the aggregates at the interface, the fluorescence intensity modifications, and the mobility of the interface for different pore sizes of the gel were investigated. It was observed that the interface was made up of aggregates of about 1 microm in size. Using dynamic light scattering, it was observed that the size of the aggregates that formed due to interactions of oppositely charged proteins depended upon the fluorescent tags attached to the proteins. The addition of small amounts of poly-L-lysine to solutions containing FITC albumin decreased the zeta potential drastically. For this, we propose a model suggesting that adding small amounts of poly-L-lysine to solutions containing FITC -albumin favors the formation of macromolecular complexes having FITC albumin molecules on its surface. Although oppositely charged FITC tagged poly-L-lysine and FITC tagged albumin influence each other's migration velocities by forming aggregates, there were no observable secondary structural modifications when the proteins were mixed in solution.  相似文献   

8.
Although polyethylene oxide (PEO) offers several advantages as a sieving polymer in SDS capillary polymer electrophoresis (SDS-CPE), solution properties of PEO cause deterioration in the electrophoresis because PEO in solution aggregates itself, degrades into smaller pieces, and forms polymer-micelle complexes with SDS. We examined protein separation on SDS-CPE with PEO as a sieving matrix in four individual buffer solutions: Tris-CHES, Tris-Gly, Tris-Tricine, and Tris-HCl buffers. The solution properties of PEO as a sieving matrix in those buffers were examined by dynamic light scattering (DLS) and by surface tension. Preferential SDS adsorption onto PEO disturbed protein-SDS complexation and impaired the protein separation efficiency. Substantial adsorption of SDS to PEO was particularly observed in Tris-Gly buffer. The Tris-CHES buffer prevented SDS from adsorbing onto the PEO. Only Tris-CHES buffer achieved separation of six proteins. This study demonstrated efficient protein separation on SDS-CPE with PEO.  相似文献   

9.
Gel electrophoresis is one of the most frequently used tools for the separation of complex biopolymer mixtures. In recent years, there has been considerable activity in the separation and characterization of protein molecules by sodium dodecylsulfate (SDS) gel electrophoresis with particular interest in using this technique to separate on the basis of size and to estimate molecular mass and protein purity. Although the method is informative, it is cumbersome, time consuming and lacks automation. In this paper we report an automated, high-performance SDS gel electrophoresis system that is based on electric-field-mediated separation of SDS-protein complexes using an ultra-thin-layer platform. The integrated fiber optic bundle-based scanning laser-induced fluorescence detection technology readily provided high sensitivity, real-time detection of the migrating solute molecules. Rapid separations of covalently and non-covalently labeled proteins were demonstrated in the molecular mass range 14,000 to 205,000 in less than 9 and 16 min, respectively. Excellent quantitation and lane-to-lane migration time reproducibility were found for all the solute components using the multilane separation platform. The limit of detection was found to be 1.5-3 ng/band for both labeling methods, with excellent linearity over a six times serial double-dilution range. Molecular mass calibration plots were compared for both covalently and non-covalently labeled proteins. A linear relationship was found between the molecular mass and electrophoretic mobility in the case of covalently labeled samples, while a non-linear relationship was revealed for the non-covalently labeled samples.  相似文献   

10.
Bacterial proteomes were analyzed by use of electrophoretically mediated microanalysis (EMMA) and field-enhanced stacking. A water-soluble protein fraction was injected onto a capillary. Next, a fluorogenic reagent was injected and allowed to react with the protein mixture, producing fluorescent products that were separated by submicellar capillary electrophoresis and detected by laser-induced fluorescence. By use of a low-ionic strength sample buffer and a brief electrophoretic step, slow moving anionic proteins were stacked at the reagent-sample interface and were preferentially labeled. By reversing the order of sample injection and labeling reagent, fast moving cationic proteins were preferentially labeled. By adjustment of the sample buffer pH, proteins with different isoelectric points were selectively labeled. Electrophoresis fingerprints were generated for the water-soluble protein fraction from six Staphylococcus species. The protein patterns produced were species-specific and were used to construct a phylogenetic tree.  相似文献   

11.
Erny GL  Marina ML  Cifuentes A 《Electrophoresis》2007,28(17):2988-2997
Zein proteins are a complex mixture of polypetides that belong to the alcohol-soluble storage proteins group (prolamines) in corn. These proteins constitute about 50-60% of the total endosperm protein and are classified in different groups on the basis of differences in their solubility and sequence. Among them, zein proteins are considered the majority group showing a high tendency to aggregate what makes their analysis by any analytical method very difficult. Thus, CZE of these proteins requires the use of very complex BGEs noncompatible with online ESI-MS analysis. The aim of this work was to find a new BGE for the CZE separation of zein protein fully compatible with ESI-MS while providing further light on the complex CZE separation of aggregatable proteins. Thus, it is demonstrated in this work that efficient and reproducible CZE separations of zein proteins can be achieved by using a BGE composed of water, ACN, formic acid and ammonium hydroxide. Besides, it is shown that zein analysis is significantly improved by including the effect of an ammonium gradient during their separation. It is experimentally verified that the ammonium gradient can easily be achieved in CZE by either working with a sample zone with a low concentration of ammonium and a BGE with a high concentration, or conversely, working with a sample zone with high ammonium concentration and a BGE with low concentration of ammonium, giving rise in both cases to a significant improvement in the CZE separation of these proteins. It is demonstrated that this procedure can give rise to efficiency improvements of up to 20-fold in the CZE separation of zein proteins. Under optimized conditions, 20 proteins could be separated with average efficiencies higher than 400 000 theoretical plates/m. Some possible explanations of this effect are discussed including stacking, protein-capillary wall adsorption, protein solubility and protein-salt interactions.  相似文献   

12.
Sulfonamide imprinted polymers using co-functional monomers   总被引:1,自引:0,他引:1  
Molecular imprinted polymers (MIPs) prepared using combination of acrylamide (ACM) and 4-vinylpyridine (4-Vpy) as co-functional monomers exhibited efficient recognition properties in both organic and aqueous media as HPLC stationary phase. The results indicate that amide and pyridine groups in functional monomers formed strong hydrogen-bonding interaction with the template molecule, and specific recognition sites were created within the polymer matrix during the imprinting process. When sulfamethoxazole (SMO) was used as template, a MIP prepared in a polar organic solvent (acetonitrile) using the combination of ACM and 4-Vpy showed better recognition of template than the polymer prepared in the same solvent using the combination of acidic monomer (methacrylic acid) and basic monomer 4-Vpy. On the contrary, when sulfamethazine (SMZ) was used as template, a MIP prepared using the combination of methacrylic acid (MAA) and 4-Vpy showed better recognition of template than the polymer prepared using the combination of ACM and 4-Vpy. Our results indicate that in organic media the degree of retention of the sample molecules on the imprinted polymers was controlled by the hydrogen-bonding interaction between the sample molecules and the polymer, while in aqueous media it was determined to a considerable extent by hydrophobic interactions. In both media the shape, size and the electronic structure of the template molecule were all-important factors in the recognition process.  相似文献   

13.
14.
Three on-column preconcentration techniques were compared to analyse a group of nonsteroidal anti-inflammatory drugs (NSAIDs) using micellar electrokinetic capillary chromatography (MEKC) under pH-suppressed electroosmotic flow (EOF) in water samples. The analysed drugs were ibuprofen, fenoprofen, naproxen, ketoprofen, and diclofenac sodium. The micellar background electrolyte (BGE) solution was formed by 75 mM sodium dodecyl sulfate (SDS), 40% (v/v) acetonitrile, and 25 mM sodium phosphate at pH 2.5. When this BGE solution was used the applied voltage was reversed, -10 kV, and the drugs were separated within 20 min. The on-column preconcentration modes, characterised all of them for the sample matrix removal out of the capillary by itself under a reverse potential at the same time as the EOF was reduced, were stacking with reverse migrating micelles (SRMM), stacking with reverse migrating micelles-anion selective exhaustive injection (SRMM-ASEI), and field-enhanced sample injection with reverse migrating micelles (FESI-RMM). The sensitivity was improved up to 154-, 263-, and 63-fold, respectively when it was calculated through the peaks height. The optimised methods were validated with spiked mineral water by combining off-line solid-phase extraction (SPE) and the proposed on-line sample stacking strategies. The detection limits (LODs) of NSAIDs in mineral water were at ng/L levels.  相似文献   

15.
The interactions of the negatively charged achiral molecular micelle, poly (sodium N-undecanoyl sulfate) (poly-SUS), with four different proteins using intrinsic and extrinsic fluorescence spectroscopic probes, are studied. A comparison of poly-SUS with the conventional surfactant, sodium dodecyl sulfate (SDS), and the monomeric species, SUS, is also reported. In this work, we observed that poly-SUS preferentially binds to acidic proteins, exhibiting positive cooperativity at concentrations less than 1 mM for all proteins studied. Moreover, it appears that the hydrophobic microdomain formed through polymerization of the terminal vinyl group of the monomer, SUS, is largely responsible for the superior binding capacity of poly-SUS. From these results, we conclude that the interactions of poly-SUS with the acidic proteins are predominantly hydrophobic and postulate that poly-SUS would produce superior interactions relative to SDS at low concentrations in polyacrylamide gel electrophoresis (PAGE). As predicted, use of poly-SUS allowed separation of the His-tagged tumor suppressor protein, p53, at sample buffer concentrations as low as 0.08% w/v (2.9 mM), which is 24 times lower than required for SDS in the standard reducing PAGE protocol. This work highlights the use of poly-SUS as an effective surfactant in 1D biochemical analysis.  相似文献   

16.
We report the analysis of human rhinovirus serotype 2 (HRV2) on a commercially available lab-on-a-chip instrument. Due to lack of sufficient native fluorescence, the proteinaceous capsid of HRV2 was labeled with Cy5 for detection by the red laser (lambda ex 630 nm) implemented in the instrument. On the microdevice, electrophoresis of the labeled virus was possible in a BGE without stabilizing detergents, which is in contrast to conventional CE; moreover, analysis times were drastically shortened to the few 10 s range. Resolution of the sample constituents (virions, a contaminant present in all virus preparations, and excess dye) was improved upon adaptation of the separation conditions, mainly by adjusting the SDS concentration of the BGE. Purity of fractions from size-exclusion chromatography after labeling of virus was assessed, and affinity complex formation of the labeled virus with various recombinant very-low-density lipoprotein receptor derivatives differing in the number of concatenated V3 ligand binding repeats was monitored. Virus analysis on microchip devices is of particular interest for experiments with infectious material because of easy containment and disposal of samples. Thus, the employment of microchip devices in routine analysis of viruses appears to be exceptionally attractive.  相似文献   

17.
Tu C  Zhu L  Ang CH  Lee HK 《Electrophoresis》2003,24(12-13):2188-2192
Large-volume sample stacking (LVSS) is an effective on-capillary sample concentration method in capillary zone electrophoresis, which can be applied to the sample in a low-conductivity matrix. NaOH solution is commonly used to back-extract acidic compounds from organic solvent in sample pretreatment. The effect of NaOH as sample matrix on LVSS of haloacetic acids was investigated in this study. It was found that the presence of NaOH in sample did not compromise, but rather help the sample stacking performance if a low pH background electrolyte (BGE) was used. The sensitivity enhancement factor was higher than the case when sample was dissolved in pure water or diluted BGE. Compared with conventional injection (0.4% capillary volume), 97-120-fold sensitivity enhancement in terms of peak height was obtained without deterioration of separation with an injection amount equal to 20% of the capillary volume. This method was applied to determine haloacetic acids in tap water by combination with liquid-liquid extraction and back-extraction into NaOH solution. Limits of detection at sub-ppb levels were obtained for real samples with direct UV detection.  相似文献   

18.
Labeling of proteins with fluorescent dyes offers powerful means for monitoring protein interactions in vitro and in live cells. Only a few techniques for noncovalent fluorescence labeling with well-defined localization of the attached dye are currently available. Here, we present an efficient method for site-specific and stable noncovalent fluorescence labeling of histidine-tagged proteins. Different fluorophores were conjugated to a chemical recognition unit bearing three NTA moieties (tris-NTA). In contrast to the transient binding of conventional mono-NTA, the multivalent interaction of tris-NTA conjugated fluorophores with oligohistidine-tagged proteins resulted in complex lifetimes of more than an hour. The high selectivity of tris-NTA toward cumulated histidines enabled selective labeling of proteins in cell lysates and on the surface of live cells. Fluorescence labeling by tris-NTA conjugates was applied for the analysis of a ternary protein complex in solution and on surfaces. Formation of the complex and its stoichiometry was studied by analytical size exclusion chromatography and fluorescence quenching. The individual interactions were dissected on solid supports by using simultaneous mass-sensitive and multicolor fluorescence detection. Using these techniques, formation of a 1:1:1 stoichiometry by independent interactions of the receptor subunits with the ligand was shown. The incorporation of transition metal ions into the labeled proteins upon labeling with tris-NTA fluorophore conjugates provided an additional sensitive spectroscopic reporter for detecting and monitoring protein-protein interactions in real time. A broad application of these fluorescence conjugates for protein interaction analysis can be envisaged.  相似文献   

19.
The (gas-phase) MP2/6-31G*(0.25) π···π stacking interactions between the five natural bases and the aromatic amino acids calculated using (truncated) monomers composed of conjugated rings and/or (extended) monomers containing the biological backbone (either the protein backbone or deoxyribose sugar) were previously compared. Although preliminary energetic results indicated that the protein backbone strengthens, while the deoxyribose sugar either strengthens or weakens, the interaction calculated using truncated models, the reasons for these effects were unknown. The present work explains these observations by dissecting the interaction energy of the extended complexes into individual backbone···π and π···π components. Our calculations reveal that the total interaction energy of the extended complex can be predicted as a sum of the backbone···π and π···π components, which indicates that the biological backbone does not significantly affect the ring system through π-polarization. Instead, we find that the backbone can indirectly affect the magnitude of the π···π contribution by changing the relative ring orientations in extended dimers compared with truncated dimers. Furthermore, the strengths of the individual backbone···π contributions are determined to be significant (up to 18 kJ mol(-1)). Therefore, the origin of the energetic change upon model extension is found to result from a balance between an additional (attractive) backbone···π component and differences in the strength of the π···π interaction. In addition, to understand the effects of the biological backbone on the stacking interactions at DNA-protein interfaces in nature, we analyzed the stacking interactions found in select DNA-protein crystal structures, and verified that an additive approach can be used to examine the strength of these interactions in biological complexes. Interestingly, although the presence of attractive backbone···π contacts is qualitatively confirmed using the quantum theory of atoms in molecules (QTAIM), QTAIM electron density analysis is unable to quantitatively predict the additive relationship of these interactions. Most importantly, this work reveals that both the backbone···π and π···π components must be carefully considered to accurately determine the overall stability of DNA-protein assemblies.  相似文献   

20.
The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell–cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH–π interactions (stacking) in protein–carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH–π interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH–π stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol−1. All the results show that the stacking CH–π interactions in protein–carbohydrate complexes can be considered to be a driving force of the binding in such complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号