首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two dinuclear complexes [Zn(μ-L)(NO3)(H2O)]2 (1) and [Cu2(μ-L)2(HL)2](NO3)2(C12H8Br2)0.5·H2O (2), (HL = 3-(2-pyridyl)pyrazole, C12H8Br2 = 4,4′-dibromobiphenyl) are synthesized under hydrothermal conditions and characterized by elemental analysis and X-ray single crystal diffraction. Crystal data for 1: triclinic, \(P\bar 1\), a = 8.8478(7) Å, b = 15.0550(11) Å, c = 16.4310(12) Å, α = 107.588(4)°, β = 112.498(3)°, γ = 115.595(3)°, V = 2099.8(9) Å3, Z = 2; for 2: triclinic, \(P\bar 1\), a = 7.2870(15) Å, b = 8.6840(17) Å, c = 9.3290(19) Å, α = 107.588(4)°, β = 112.498(3)°, γ = 115.595(3)°, V = 528.77(18) Å3, Z = 1. Complex 1 and 2 are both dinuclear structures which are further packed into a 1D supramolecular chain and a 3D supramolecular framework via weak C–H…O hydrogen bond interactions respectively.  相似文献   

2.
A new series of pyridyl pyrazolate boron complexes 2a-e have been synthesized, in which 2a-c exhibit remarkable dual fluorescence properties due to the photoinduced electron transfer reaction.  相似文献   

3.
Summary Equimolar quantities of [MI2(CO)3(NCMe)2] (M = Mo or W) and C3H4N2 (pyrazole) react in CH2C12 at room temperature to give the iodo-bridged dimers [M(μ-I) (CO)3(C3H4N2)]2 (1) and (2). Two equivalents of C3H4N2 react with [MI2(CO)3(NCMe)2] (M = Mo or W) to give the bis(pyrazole) complexes [MI2(CO)3(C3H4N2)2] (3) and (4) in good yield. Three and four equivalents of pyrazole react with [MoI2(CO)3(NCMe)2] to give the cationic complexes [MoI(CO)3(C3H4N2)3]I (5) and [MoI(CO)2(C3H4N2)4]I (6), respectively. The mixed ligand complexes [MI2(CO)3(C3H4N2)L] (M = Mo or W; L = PPh3, AsPh3 or SbPh3) (7)-(12) are prepared by reacting equimolar amounts of [MI2(CO)3(NCMe)2] and L in CH2C12 at room temperature, followed by an in situ reaction with one equivalent of C3H4N2. The MoSnCl3 complex [MoCl(SnCl3)(CO)3(C3H4N2)2] (13) is prepared in an analogous manner using acetone as the solvent, whilst the mixed ligand compound [MoCl(SnQ3)(CO) 3(C3H4N2)(PPh3)] (14) was prepared by treating the dimeric complex [Mo(μ-Cl)(SnCl3)(CO)3(PPh3)]2 with two equivalents of C3H4N2. All the new complexes were characterised by elemental analysis (carbon, hydrogen and nitrogen), i.r. and 1H n.m.r. spectroscopy.  相似文献   

4.
New Pd(II) complexes with 1-allyl-3-(2-pyridyl)thiourea (APTU) of the formulas [Pd(C9H11N3S)Cl2] (I) and [Pd(C9H11N3S)2]Cl2 (II) were obtained and examined by UV-Vis, IR, and 1H NMR spectroscopy. The conditions for the complexation reactions were optimized. The instability constants and molar absorption coefficients of these complexes were calculated. Comparison of the characteristic bands in the UV-Vis and IR spectra of the complexes and free APTU revealed that the ligand in both complexes is coordinated to the metal atom in the thione form in the bidentate chelating mode through the S atom of the thiourea group and the pyridine N atom. In the UV-Vis spectra of the complexes, the charge transfer bands (π → π* Py) and n → π* (C=NPy), (C=S) experience hypsochromic shifts by 450–470 cm−1 caused by the coordination of APTU to the metal ion, which gives rise to ligand-metal charge-transfer bands (C=NPy → Pd, n → π* (C=S)) and (SPd). The protons in the 6-, 4-, and 3-positions of the pyridine ring and the thiourea NH proton in the chelate ring are most sensitive to the complexation.  相似文献   

5.
2-(2-Pyridyl)benzimidazole (PBI) was synthesized by solvent-free aldol condensation and complexed with nickel(II) and copper(II) nitrate and perchlorate salts by simple reactions at room temperature. The transition metal complexes [Ni(PBI)2NO3](NO3) (1), [Ni(PBI)3](ClO4)2·1.5H2O (2), [Cu(PBI)2NO3](NO3) (3), and [Cu(PBI)3](ClO4)2·3H2O (4) (PBI = 2-(2-pyridyl)benzimidazole) were synthesized in good yield and structurally characterized by X-ray crystallography, infrared absorption spectroscopy, and elemental analysis. Complexes 1 and 3 are isostructural, crystallizing in the same space group P21/c. Both the nickel(II) and copper(II) atoms have distorted square pyramidal geometries. The metal centers in these complexes are coordinated by two molecules of the bidentate ligand (PBI) and an O-atom of the coordinated nitrate anion. Complexes 2 and 4 are also isostructural but do not crystallize in the same space group: P-1 for 2 and Pccn for 4. The geometry around both the nickel(II) and the copper(II) centers is distorted octahedral. Here, the metal atoms are coordinated by three molecules of 2-(2-pyridyl)benzimidazole. The copper(II) complex 4 has 2-fold symmetry with one of the three PBI ligands being positionally disordered about the 2-fold axis. Intermolecular N–H···O hydrogen bonds, involving the NH H-atom and an O-atom of the coordinated nitrate anion, are observed in all four complexes. In 1 and 3, this gives rise to the formation of centrosymmetric dimer-like structures that are decorated by hydrogen-bonded nitrate anions. In 2 and 4 the perchlorate anions and the water molecules of crystallization are involved in N–H···O and O–H···O hydrogen bonds bridging two symmetry-related cations, thus forming cyclic arrangements. In the case of complex 4, this leads to the formation of two-dimensional hydrogen-bonded networks parallel to plane (011). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The iron coordination chemistry of 3,5-di(2-pyridyl)-1,2,4-triazoles and 3,5-di(2-pyridyl)-1,2,4-triazolates is reviewed. This includes both mononuclear and dinuclear complexes, and both iron(II) and iron(III) oxidation states. The main focus is on the synthesis, structure and magnetic properties of these complexes.  相似文献   

7.
The hydrothermal synthesis of a heterocyclic quaternary nitrogen compound, namely, 6,7-dihydro-pyrido[2′,1′:3,4]pyrazino[1,2-a]imidazol-5-ium-bromide monohydrate (LBr · H2O) is reported. Various spectroscopic analyses were performed on the cationic heterocycle. CuII and ZnII halide complexes of this novel ligand were prepared. The heterocycle and its complexes were characterized by single crystal X-ray diffraction analysis. Both complexes contain neutral [MIILX3] molecules, where the cyclic ligand (L+) is coordinated to the metal as a monodentate ligand. The Cu2+ complex has a distorted tetrahedral geometry, indicating an obvious steric effect from L+ on the chloride co-ligand. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Summary 2-(2-Pyridyl)-1, 3-propanediol was converted into the diacetate, which was then condensed with phthalimide. The product was hydrolyzed with hydrochloric acid to give 2-(2-pyridyl)-1, 3-diaminopropane. The free amine gave 12 complexes with copper(II), nickel(II), and cobalt(III), which were characterized spectroscopically and magnetically. Features of the amine as a ligand are discussed. A few related complexes were also studied.  相似文献   

9.
10.
Synthesis, electronic absorption spectra, 13C NMR and photochemistry are reported for the complexes M(CO)4bpym (M = Cr or W) and [W(CO)4]2bpym. The electronic absorption spectra indicate, for these complexes, that the lowest lying metal-to-ligand (L) charge transfer (MLCT) excited state is lower in energy than the ligand field (LF) excited states. The 13C NMR spectra showed that the chemical shifts of C(5) and C(6) for the M-bpym complexes move downfield with respect to that of the free ligand, bpym, while C(4) moves upfield upon complexation. Small, wavelength-dependent quantum yields for loss of CO were obtained upon irradiation. These quantum yields were an order of magnitude larger for the Cr-bpym complex than for the W complexes (Φ = 2.4 x 10?2 quanta/min for Cr-bpym, 2.5 x 10?3 quanta/min for W-bpym and 1.1 x 10?3 quanta/min for W-bpym-W, λirr = 366 nm).  相似文献   

11.
Four copper(II) supramolecular complexes, {[Cu(Hpb)(mal)]·H2O} n (1), (Hpb?=?2-(2-pyridyl)-benzimidazole, mal?=?maleate), [Cu4(pb)4(cro)4(MeOH)2]·2MeOH (2) (cro?=?crotonate), [Cu2(pb)(Hpb)(mac)3(MeOH)] (3) (mac?=?α-methacrylate) and [Cu(Hpb)(acr)2(H2O)] (4) (acr?=?acrylate), based on carboxylate copper(II)-aromatic ligand systems which are assembled by combination of metal coordination, hydrogen-bond and π–π interactions, have been rationally designed and synthesized. Complex 1 forms a 3D supramolecular network with open channels by extending 2D undulating sheets constructed from 1D helical chains. Complex 2 generates a 2D grid-like sheet via unusual finite-chain tetranuclear molecules, with four copper atoms arranged in a line; the unit does not extend further due to the capping effect of the terminal methanol. Complexes 3 and 4 present a 1D sinusoidal structure and a 3D columnar network with 1D ladder-shaped double chains, respectively. Interestingly, coligand Hpb, deprotonated or/and neutral in different supramolecular complexes, provides hydrogen bonding and π–π stacking interactions. In complexes 2, 3 and 4, carboxylate anions show various bridging modes, which are reflected in their magnetic properties. Weak ferromagnetic coupling (syn-anti µ-OCO) exists in 1, antiferromagnetic (syn-syn µ-OCO) and weak ferromagnetic coupling (µ-O of the??COO group) in 2 and antiferromagnetic coupling (syn-syn µ-OCO) in 3.  相似文献   

12.
13.
14.
15.
Two new complexes, trans-[MnL2(NCS)2] (1) and trans-[CoL2(H2O)(EtOH)](ClO4)2?·?H2O (2) with asymmetrical triaryltriazole ligands [L?=?3-(p-chlorophenyl)-4-(p-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole], have been synthesized and characterized by elemental analysis, FT-IR, ESI-MS, and single-crystal X-ray diffraction. In the complexes each L adopts a chelating bidentate mode via the nitrogen of pyridyl and triazole. Both complexes have a similar distorted octahedral core with two NCS? ions in the trans position in 1, while one H2O and one EtOH are present in the axial sites in 2.  相似文献   

16.
New palladium(II) and platinum(II) complexes of saccharinate (sac) with 2-(2-pyridyl)benzimidazole (pybim) have been synthesized and characterized by elemental analysis and spectroscopic techniques. From the experimental studies, these complexes were formulated as [Pd(pybim)(sac)2] (1), and [Pt(pybim)(sac)2]·4H2O (2). The ground-state geometries of both complexes were optimized using density functional theory (DFT) methods at the B3LYP level. A bidentate pybim ligand together with two N-coordinated sac ligands form the square-planar MN4 coordination geometry around the palladium(II) and platinum(II) ions. The calculated IR and UV-vis spectral data have been correlated to the experimental results. Thermal analysis data support the molecular structures of both complexes.  相似文献   

17.
A series of emissive Cu(I) cationic complexes with 3-(2-pyridyl)-5-phenyl-pyrazole and various phosphines: dppbz (1), Xantphos (2), DPEPhos (3), PPh3 (4), and BINAP (5) were designed and characterized. Complexes obtained exhibit bright yellow-green emission (ca. 520–650 nm) in the solid state with a wide range of QYs (1–78%) and lifetimes (19–119 µs) at 298 K. The photoluminescence efficiency dramatically depends on the phosphine ligand type. The theoretical calculations of buried volumes and excited states explained the emission behavior for 1–5 as well as their lifetimes. The bulky and rigid phosphines promote emission efficiency through the stabilization of singlet and triplet excited states.  相似文献   

18.
19.
The conjugated bimetallic ruthenium(II) complex composed of 1,4-phenylenediamine as a bridging ligand was synthesized by photo-irradiation to show redox-switching of the emission properties of the terminal Ru(II) units depending on the redox state of the π-conjugated bridging spacer.  相似文献   

20.
The pyrazole ligand 3,5-dimethyl-4-iodopyrazole (HdmIPz) has been used to obtain a series of palladium(II) complexes (14) of the type [PdX2(HdmIPz)2] {X = Cl (1); Br (2); I (3); SCN (4)}. All compounds have been isolated, purified, and characterized by means of elemental analysis, IR spectroscopy, 1H and 13C{1H}-NMR experiments, differential thermal analysis (DTA), and thermogravimetry (TG). The TG/DTA curves showed that the compounds released ligands in the temperature range 137–605 °C, yielding metallic palladium as final residue. The complexes and the ligand together with cisplatin have been tested in vitro by MTT assay for their cytotoxicity against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号