首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 115 毫秒
1.
低分子肝素/壳聚糖/海藻酸钠复合微囊的制备及释药性能   总被引:8,自引:0,他引:8  
低分子肝素/壳聚糖/海藻酸钠复合微囊的制备及释药性能;壳聚糖; 海藻酸钠; 低分子肝素; 微囊; 释药性能  相似文献   

2.
聚乳酸组织工程支架材料   总被引:24,自引:3,他引:21  
综述了生物活性因子固定化的聚乳酸-聚氨基酸衍生物共聚物和通过亲-疏水性设计的众多聚乳酸-聚氧化乙烯(PLA-PEO)共聚物的研究进展。展现了其在组织工程材料,药物控释体系和其他生物医用材料中的广泛应用前景。  相似文献   

3.
研究了环氧呋喃树脂反应增容改性聚乳酸/淀粉复合材料,对索氏提取法得到的淀粉进行1H-NMR、FTIR、XPS和静态接触角测试表征.结果表明在熔融共混过程中环氧呋喃树脂(FER)与淀粉及聚乳酸(PLA)发生化学反应,从而起到反应性增容的作用.另外,利用SEM、万能材料试验机和DSC分别对复合材料的界面相容性、机械性能以及热性能进行了表征,结果表明FER能够显著改善PLA和淀粉之间的界面相容性,在保持PLA高强度高模量的基础上,显著提高了PLA/starch复合材料的综合机械性能和结晶性能.  相似文献   

4.
动态力学分析(DMA)、溶度参数法、聚合物混合焓法对聚偏氟乙烯(PVDF)和左旋聚乳酸(PLLA)的相容性分析结果显示,随着共混体系中PLLA的增加,PVDF和PLLA之间的相容性变差。扫描电镜(SEM)、广角X-射线衍射(WAXD)和拉伸实验对共混膜中PVDF/PLLA配比对其微观结构和力学性能影响的分析结果显示,随PLLA含量从10%增加到50%,共混膜由均匀致密结构变为存在缝隙的多孔结构,共混膜结晶度增加,断裂伸长率下降,断裂强度先增加后下降,在PLLA含量为40%时,强度达到最大。  相似文献   

5.
Composite scaffolds are commonly used strategies and materials employed to achieve similar analogs of bone tissue. This study aims to fabricate 10% wt polylactic acid (PLA) composite fiber scaffolds by the air-jet spinning technique (AJS) doped with 0.5 or 0.1 g of zirconium oxide nanoparticles (ZrO2) for guide bone tissue engineering. ZrO2 nanoparticles were obtained by the hydrothermal method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM and fourier-transform infrared spectroscopy (FTIR) analyzed the synthesized PLA/ZrO2 fiber scaffolds. The in vitro biocompatibility and bioactivity of the PLA/ZrO2 were studied using human fetal osteoblast cells. Our results showed that the hydrothermal technique allowed ZrO2 nanoparticles to be obtained. SEM analysis showed that PLA/ZrO2 composite has a fiber diameter of 395 nm, and the FITR spectra confirmed that the scaffolds’ chemical characteristics are not affected by the synthesized technique. In vitro studies demonstrated that PLA/ZrO2 scaffolds increased cell adhesion, cellular proliferation, and biomineralization of osteoblasts. In conclusion, the PLA/ZrO2 scaffolds are bioactive, improve osteoblasts behavior, and can be used in tissue bone engineering applications.  相似文献   

6.
PLA/MWNTs/HA复合材料的制备和性能研究   总被引:6,自引:1,他引:6  
采用超声辅助原位湿法合成多壁碳纳米管/羟基磷灰石纳米复合材料(MWNTs/HA),并通过溶液浇铸法制备了PLA/MWNTs/HA复合材料薄膜。考察了MWNTs/HA纳米粒子含量对复合膜性能的影响,并通过力学性能、SEM、FTIR、以及DMTA对复合膜性能进行了表征,结果表明:随着纳米粒子质量分数的增加,复合膜的拉伸强度呈下降趋势;拉伸模量和储能模量呈现先下降后上升的趋势;玻璃化转变温度则呈现不断上升趋势。  相似文献   

7.
PLA/PEG/PLA三嵌段共聚物载药纳米胶囊的制备及表征   总被引:8,自引:1,他引:8  
用于药物控释体系的微胶束具有实心微球结构,药物分子主要吸附于微球表面,极易脱落,在释药初期有明显的突释效应;而微胶囊的药物主要集中于囊心部分,药物通过扩散作用以及高分子膜的降解而逐渐释放到环境中,因而更有利于药物分子平稳、缓慢地释放.对于自然界中能够自发形成微胶囊的小分子材料,其分子中往往具有一个较小的亲水部分和一个相对较大的憎水部分,  相似文献   

8.
徐文峰  廖晓玲 《应用化学》2011,28(2):214-218
利用溶液共混法以及冷冻干燥法制备了三维多孔碳纤维/聚乳酸/壳聚糖(CF/PLA/CS)复合生物支架材料,通过相差显微镜和扫描电子显微镜检测了鼠骨髓基质细胞(BMSCs)与该材料的生物相容性,得到了MTT生长曲线,评价了材料的毒性。 结果表明,以实验组材料的浸提液培养细胞,8 d后细胞开始连片生长,没有观察到细胞变形、坏死现象;在实验组材料上培养4 d后细胞的SEM图像显示,细胞形貌正常,并已开始向孔隙深部生长;MTT法绘制的增值曲线表明,培养4 d后实验组的细胞增殖速度高出空白对照组30%。 以上细胞形态学观察法和细胞增殖法评价结果表明,三维多孔 CF/PLA/CS复合材料没有细胞毒性,并对细胞有良好的粘附、增殖能力,有望成为骨修复材料。  相似文献   

9.
多孔纳米羟基磷灰石-聚乳酸复合材料的   总被引:27,自引:0,他引:27  
本文以TIPS法,在溶液中制备得到多孔纳米羟基磷灰石-聚乳酸复合材料,并对无机相与有机相之间的界面结合情况进行了研究,结果表明纳米羟基磷酸钙与聚乳酸基体之间结合良好。  相似文献   

10.
Chitosan (CTS) has been used as a nerve guidance conduit (NGC) material for bridging peripheral nerve defects due to its biocompatible, biodegradable, and non-toxic properties. However, the nerve regeneration effect of chitosan alone is restricted due to its inadequate biological activity. Herein, a composite, bioactive chitosan based nerve conduit, consisting of outer warp-knitted tube scaffold made from medical-grade chitosan fiber, and inner porous cross linked carboxymethyl chitosan (C-CM-CTS) sponge with radial texture was developed. The inner wall of the scaffold was coated with C-CM-CTS solution. CM-CTS provided favorable bioactivities in the composite chitosan-based nerve conduit. An in vitro study of CM-CTS revealed its satisfying biocompatibility with fibroblast and its inhibition of oxidative damage to Schwann cells. As the internal filler of the NGC, the lyophilized sponge of C-CM-CTS showed a longitudinal guidance effect for nerve reconstruction. After 10 mm defect in rat sciatic nerve was bridged with the composite bioactive chitosan-based nerve conduit, the nerve conduit was able to effectively promote axonal regeneration and played a positive role in inducing nerve regeneration and functional recovery. In addition to the functional advantages, which are equal to those of an autograft; the technology for the preparation of this conduit can be put into mass production.  相似文献   

11.
Natural and synthetic cross‐linked polymers allow the improvement of cytocompatibility and mechanical properties of the individual polymers. In osteochondral lesions of big size it will be required the use of scaffolds to repair the lesion. In this work a borax cross‐linked scaffold based on fumarate‐vinyl acetate copolymer and chitosan directed to osteochondrondral tissue engineering is developed. The cross‐linked scaffolds and physical blends of the polymers are analyzed in based on their morphology, glass transition temperature, and mechanical properties. In addition, the stability, degradation behavior, and the swelling kinetics are studied. The results demonstrate that the borax cross‐linked scaffold exhibits hydrogel behavior with appropriated mechanical properties for bone and cartilage tissue regeneration. Bone marrow progenitor cells and primary chondrocytes are used to demonstrate its osteo‐ and chondrogenic properties, respectively, assessing the osteo‐ and chondroblastic growth and maturation, without evident signs of cytotoxicity as it is evaluated in an in vitro system.

  相似文献   


12.
Designing and fabricating nanocomposite scaffolds for bone regeneration from different biodegradable polymers and bioactive materials are an essential step to engineer tissues. In this study, the composite scaffold of gelatin/hyaluronic acid (Gel/HA) containing nano-bioactive glass (NBG) was prepared by using freeze-drying method. The biocompatibilities in-vitro of the Gel-HA/NBG composite scaffolds, including MTT assay, ALP activity, von Kossa staining and tetracycline staining, were investigated. The SEM observations revealed that the prepared scaffolds were porous with three-dimensional (3D) and interconnected microstructure, agglomerated NBG particles were uniformly dispersed in the matrix. MTT results indicated that the tested materials didn't show any cytotoxicity. The presence of NBG in the composite scaffold further enhanced the ALP activity in comparison with the pure Gel/HA scaffold. The von Kossa staining and tetracycline staining results also indicated that the NBG may improve the cell response. Therefore, the results indicated the nanocomposite scaffold made from Gel, HA and NBG particles could be considered as a potential bone tissue engineering implant.  相似文献   

13.
Poly(lactic acid) (PLA)/poly(propylene carbonate) (PPC)/mica composites with different amount of chain extender (CE) were melt compounded and then processed via two routes (compression molding and uniaxial stretching) into sheets and films. The tensile, thermal, and oxygen barrier properties of all the samples were investigated. Tensile test showed that the tensile strength and elongation at break of all films were much higher than that of all sheets, especially for PLA/PPC/mica with 0.9‐wt% CE composite (CM3(CE)0.9) film. The crystallinity of all films increased significantly after uniaxial stretching of sheet samples. The Fourier transform infrared spectroscopy (FTIR) results proved the chemical reactions occurred between PLA/PPC and CE. Scanning electron microscope (SEM) analysis revealed that compatibility and interfacial adhesion of all samples were improved after adding mica and CE, and they were further enhanced after uniaxial stretching. The addition of CE was not favorable to improve the oxygen barrier performance of PLA/PPC/mica sheet samples. However, the oxygen barrier performance of film samples was significantly improved after uniaxial stretching. In particular, the CM3(CE)0.9 film had the lowest oxygen permeability coefficient (1.4 × 10?15 cm3·cm/(cm2·s·Pa)), and this was the best oxygen barrier properties reported in the literature for PLA‐based composites, which was comparable with PA film. This study demonstrated the high efficiency of uniaxial stretching on improvement of properties of composites, which would promote the application of biodegradable polymers in oxygen sensitive food packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号