首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combined effect of an anisotropic surface tension and interface kinetics in dendritic crystal growth is studied numerically by a fully dynamical front-tracking method in two dimensions. It is shown how kinetic effects can be incorporated into the algorithm without causing numerical instabilities. The results are compared to the theory of E.A. Brener and V.I. Mel'nikov (Adv. Phys. 40, 53 (1991)). A particularly interesting case arises when the directions of minimum surface tension and minimum kinetic effect are different. In this case, when the deviation from local equilibrium is increased, the predicted transition from dendrites growing into the direction of the minimum surface stiffness to the direction of minimum kinetic effect is confirmed. Dendrites near this transition show strong oscillations and correlated side-branching. The transition where the oscillating dendrites change direction shows hysteresis. Received 30 September 1999 and Received in final form 23 February 2000  相似文献   

2.
The stability of the flow of a fluid past a solid membrane of infinitesimal thickness is investigated using a linear stability analysis. The system consists of two fluids of thicknesses R and H R and bounded by rigid walls moving with velocities and , and separated by a membrane of infinitesimal thickness which is flat in the unperturbed state. The fluids are described by the Navier-Stokes equations, while the constitutive equation for the membrane incorporates the surface tension, and the effect of curvature elasticity is also examined for a membrane with no surface tension. The stability of the system depends on the dimensionless strain rates and in the two fluids, which are defined as and for a membrane with surface tension , and and for a membrane with zero surface tension and curvature elasticity K. In the absence of fluid inertia, the perturbations are always stable. In the limit , the decay rate of the perturbations is O(k 3 ) smaller than the frequency of the fluctuations. The effect of fluid inertia in this limit is incorporated using a small wave number asymptotic analysis, and it is found that there is a correction of smaller than the leading order frequency due to inertial effects. This correction causes long wave fluctuations to be unstable for certain values of the ratio of strain rates and ratio of thicknesses H. The stability of the system at finite Reynolds number was calculated using numerical techniques for the case where the strain rate in one of the fluids is zero. The stability depends on the Reynolds number for the fluid with the non-zero strain rate, and the parameter , where is the surface tension of the membrane. It is found that the Reynolds number for the transition from stable to unstable modes, , first increases with , undergoes a turning point and a further increase in the results in a decrease in . This indicates that there are unstable perturbations only in a finite domain in the plane, and perturbations are always stable outside this domain. Received: 29 May 1997 / Revised: 9 October 1997 / Accepted: 26 November 1997  相似文献   

3.
As a drop of fluid is deposited on the surface of a miscible fluid (that we call the solvent), it undergoes a strong pulling due to its surface rupture and it acquires a kinetic energy independently of gravity. For the drop and the solvent being of the same fluid we observe a drop injection at an initial velocity which scales as the square root of the surface tension of the drop against air. Once injected, the drop develops a transverse instability giving rise to an expanding ring. Viscosity terminates the process and stops the ring. We show that the final ring height follows a scaling law whereas two asymptotical scaling regimes can be identified for the ring radius. Received 31 August 1999  相似文献   

4.
A supercooled liquid is said to have a kinetic spinodal if a temperature Tsp exists below which the liquid relaxation time exceeds the crystal nucleation time. We revisit classical nucleation theory taking into account the viscoelastic response of the liquid to the formation of crystal nuclei and find that the kinetic spinodal is strongly influenced by elastic effects. We introduce a dimensionless parameter lambda, which is essentially the ratio between the infinite frequency shear modulus and the enthalpy of fusion of the crystal. In systems where lambda is larger than a critical value lambda(c) the metastability limit is totally suppressed, independently of the surface tension. On the other hand, if lambda相似文献   

5.
We consider nonequilibrium adsorption to a freshly formed surface. Owing to the initial lack of equilibrium, the common diffusion-control assumption is inconsistent at small times. A uniform small-time asymptotic approximation is constructed for a Langmuir-type system in terms of the small parameter epsilon representing the ratio of the respective kinetic and diffusive time scales of the problem. The diffusion-control approximation becomes valid only when t>epsilon. The adsorption results are applied to the calculation of the dynamic surface tension.  相似文献   

6.
李源  罗喜胜 《物理学报》2014,63(8):85203-085203
采用理论分析的方法考察了磁场中非理想流体中Rayleigh-Taylor(RT)不稳定性气泡的演化过程,在与磁场垂直的平面中,综合考虑流体黏性和表面张力的影响,推导了二维非理想磁流体RT不稳定性气泡运动的控制方程组,给出了不同情况下气泡速度的渐近解和数值解,分析了流体黏性、表面张力和磁场对气泡发展的影响,分析结果表明:流体黏性和表面张力能够降低气泡速度和振幅,即能够抑制RT不稳定性;而磁场对RT不稳定性的影响是由非线性部分引起的,并且磁场非线性部分的方向决定了磁场是促进还是抑制RT不稳定性的发展,  相似文献   

7.
This paper investigates the dependence of surface undulation on a film thickness considerably greater than the critical value of a thin film system. It considers that surface tension and residual stress are the main cause of surface undulation. The study found that there is a critical undulation wavelength that minimizes the free energy of a thin film system, that this critical wavelength depends on the film thickness, and the effect of undulation amplitude is insignificant. The research also found that the surface undulation has a negligible influence on the residual stresses in the thin film system.  相似文献   

8.
The Gibbs dividing surface method is used to derive the differential equation defining the dependence of the surface tension of a bubble in a nonpolar single-component liquid on its radius. Exact and asymptotic solutions of this equation have been obtained. It follows from the calculations that the bubble surface tension increases with decreasing radius. The Rayleigh-Plesset equation describing the bubble collapse dynamics is solved numerically by taking into account the size dependence of surface tension. The size dependence of surface tension is shown to affect significantly the final bubble collapse stage and, on the whole, accelerates this process.  相似文献   

9.
马聪  刘斌  梁宏 《物理学报》2022,(4):153-163
采用介观格子Boltzmann方法模拟界面张力作用下三维流体界面的Rayleigh-Taylor (RT)不稳定性的增长过程,主要分析表面张力对流体界面动力学行为及尖钉和气泡后期增长的影响机制.首先发现三维RT不稳定性的发生存在临界表面张力(σc),其值随着流体Atwood数的增大而增大,且数值预测值与理论分析结果σc=(ρh1)g/k~2一致.另外,随着表面张力的增大,不稳定性演化过程中界面卷吸程度和结构复杂性逐渐减弱,系统中界面破裂形成离散液滴的数目也显著减少.相界面的后期动力学行为也从非对称发展转向始终保持关于中轴线对称.尖钉与气泡振幅在表面张力较小时对其变化不显著,当表面张力增大到一定值后,可以有效地抑制尖钉与气泡振幅的增长.进一步发现,高雷诺数三维RT不稳定性在不同表面张力下均经历4个不同的发展阶段:线性阶段、饱和速度阶段、重加速和混沌混合阶段.尖钉与气泡在饱和速度阶段以近似恒定的速度增长,其渐进速度的值与修正的势流理论模型结果一致.受非线性Kelvin-Helmholtz旋涡的剪切作...  相似文献   

10.
Free-standing liquid crystal films with positive diamagnetic susceptibility can have the smectic ordering enhanced by an external field applied perpendicular to the plane layers. Within a quadratic functional integral approach, we investigate the interplay between the smectic order induced by an external field H and that due to the surface tension γ between the film and the surrounding gas. We find that the average smectic fluctuation is a non-monotonic function of film thickness, with a characteristic thickness scale ξ H delimiting the predominance of surface tension and magnetic field effects. This characteristic thickness obeys simple asymptotic power-law relations as a function of the ordering terms which allows us to represent the average smectic fluctuations in a universal scaling form. Received 7 January 2003 Published online 1st April 2003 RID="a" ID="a"e-mail: marcelo@ising.fis.ufal.br  相似文献   

11.
Over the past few years diffusion-controlled systems have been shown to share a common set of interfacial morphologies. The singular nature of the microscopic dynamics of surface tension and kinetic growth far from equilibrium are critical to morphology selection, with special importance attributed to the anisotropy of these effects. The morphologies which develop can be organized via a morphology diagram according to the driving force and the effective anisotropy. We focus on the properties of the dense-branching morphology (DBM) which appears for sufficiently weak effective anisotropy, and the nature of morphology transitions between the DBM and dendritic growth stabilized by either surface tension or kinetic effects. The DBM is studied in the Hele-Shaw cell, and its structure analyzed by linear stability analysis. A comparison is made between the power spectrum of the structure and the stability analysis. We then provide a detailed account of the morphology diagram and morphology transitions in an anisotropic Hele-Shaw cell. Theoretically the question of morphology transitions is addressed within the boundary-layer model by computing selected velocities as a function of the undercooling for different values of the surface tension and the kinetic term. We argue that the fastest growing morphology is selected whether it is the DBM, surface tension dendrites, or kinetic dendrites. A comparison is made with our experimental results in electrochemical deposition for the correspondence between growth velocities and morphology transitions.  相似文献   

12.
Light scattering and reflection measurements using attenuated total reflection technique for s polarization of the incident light on a finite one-dimensional photonic crystal are reported. Angular specular reflection was measured experimentally to determine, the optimum thickness, the angular position of the surface mode, and the number of bi-layers of the system. It was demonstrated that the position of the surface mode inside the last film is close to the asymptotic value when the number of periods is increased. Spectral reflection measurements were made to determine experimentally the band gap width and measure the dispersion relation of the surface mode inside this band. The corresponding field amplitude was calculated (∣E∣2) showing that in resonant conditions it has a maximum near the surface. The angular dependence of the scattered light measured displays a peak caused by singles cattering and located approximately at the excitation angle of the surface electromagnetic mode. When the incident light is in resonance with the surface electromagnetic wave, it is found experimentally that the scattering of light is enhanced overall by approximately one order of magnitude in comparison with the off-resonance case.  相似文献   

13.
王小慧  陈明文  王自东 《物理学报》2016,65(3):38701-038701
从物质溶液浓度变化角度考虑了球形晶体在溶液中溶解随表面张力的变化,利用渐近方法求出了在溶液中球形晶体溶解的浓度和界面的近似解析解,能够计算出溶解过程中球形晶体溶解的浓度、界面演化形态.研究了表面张力对于溶液中溶质浓度分布、球晶界面形态和溶解速度的影响.结果表明,表面张力促进了球形晶体在溶液中的溶解.随着表面张力参数增大,溶液中在界面前沿的溶质浓度升高,球形晶体的溶解速度增大;随着时间的增加,溶解速度逐渐变大,球形晶体半径逐渐变小,直至溶解结束.  相似文献   

14.
Thermophysical properties of undercooled liquid monotectic alloys are usually difficult to be determined because of the great dittlculty in achieving large undercoolings. We measure the surface tension of liquid Fe77.5 Cu13Mo9.5 monotectic alloy by an electromagnetic oscillating drop method over a wide temperature range from 1577 to 1784 K, including both superheated and undercooled states. A good linear relationship exists between the surface tension and temperature. The surface tension value is 1.588 N/m at the monotectic temperature of 1703K, and its temperature coefficient is -3.7 × 10^-4 Nm^-1 K^-1. Based on the Butler equation, the surface tension is also calculated theoretically. The experimental and calculated results indicate that the effect of the enriched element on droplet surface is much more conspicuous than the other elements to decrease the surface tension.  相似文献   

15.
The effect of surface tension associated internal pressure on the Curie phase transition in ferroelectric nanowires and nanodots has been investigated using a modified Landau–Ginzburg–Devonshire phenomenological approach. Based on experimental data on the size- dependent phase transition in freely suspended single-crystalline ferroelectric nanocrystals, bulk surface tension coefficients for BaTiO3 and PbTiO3 have been determined to be of the order of 1–2 N/m. The present theoretical study reproduces the size dependence of the transition temperature experimentally acquired in individual BaTiO3 single-crystalline nanowires. In the case of PbTiO3 single-crystalline nanodots, however, in order to fit the theoretically calculated size-dependent ferroelectric transition with the experimental data, an effective surface tension coefficient has been introduced, which is size dependent and can be much higher than the bulk value. An erratum to this article can be found at  相似文献   

16.
Surface tension and pressure (stress) tensors of Lennard-Jones clusters, in the size range 200 ~ 2700 atoms/cluster, formed from evaporating liquid droplets were calculated in a Molecular Dynamics simulation. Icosahedral clusters have a much larger surface tension than decahedral, fcc, and hcp ones, meanwhile asymmetric icosahedral clusters have a lower surface tension. Fcc and hcp clusters have a very small surface tension. Decahedral clusters have a surface tension closer to that of fcc and hcp ones than to that of icosahedral ones, though both icosahedral and decahedral structures have five fold symmetry axis. Binary component clusters have a higher surface tension than single component ones.  相似文献   

17.
In this work, we introduce a restricted ballistic deposition model with symmetric growth rules that favors the formation of local finite slopes. It is the simplest model which, even without including a diffusive relaxation mode of the interface, leads to a macroscopic groove instability. By employing a finite-size scaling of numerical simulation data, we determine the scaling behavior of the surface structure grown over a one-dimensional substrate of linear size L. We found that the surface profile develops a macroscopic groove with the asymptotic surface width scaling as , with . The early-time dynamics is governed by the scaling law , with . We further investigate the sensitivity to initial conditions of the present model by applying damage spreading techniques. We find that the early-time distance between two initially close surface configurations grows in a ballistic fashion as , but a slower Brownian-like scaling () sets up for evolution times much larger than a characteristic time scale . Received 26 May 2000  相似文献   

18.
By example of a particle interacting with ideal gas, it is shown that the statistics of collisions in statistical mechanics at any value of the gas rarefaction parameter qualitatively differ from that conjugated with Boltzmann’s hypothetical molecular chaos and kinetic equation. In reality, the probability of collisions of the particle in itself is random. Because of that, the relaxation of particle velocity acquires a power-law asymptotic behavior. An estimate of its exponent is suggested on the basis of simple kinematic reasons.  相似文献   

19.
Recently, it has been observed that a liquid film spreading on a sample surface will significantly distort atomic force microscopy (AFM) measurements. In order to elaborate on the effect, we establish an equation governing the deformation of liquid film under its interaction with the AFM tip and substrate. A key issue is the critical liquid bump height yoc, at which the liquid film jumps to contact the AFM tip. It is found that there are three distinct regimes in the variation of yoc with film thickness H, depending on Hamaker constants of tip, sample and liquid. Noticeably, there is a characteristic thickness H^* physically defining what a thin film is; namely, once the film thickness H is the same order as H^*, the effect of film thickness should be taken into account. The value of H^* is dependent on Hamaker constants and liquid surface tension as well as tip radius.  相似文献   

20.
The shock wave structure in a liquid is studied by a molecular dynamics simulation method. The interaction between atoms is described by the Lennard-Jones (6–12) potential. In contrast to earlier works, the simulation is performed in a reference frame tied to the shock wave front. This approach reduces non-physical fluctuations and makes it possible to calculate the distribution functions of the kinetic and potential energy for several cross sections within the shock layer. The profiles of flow variables and their fluctuations are found. The surface tension connected with pressure anisotropy within the shock front is calculated. It is shown that the main contribution to the surface tension coefficient comes from the mean virial. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 9, 722–727 (10 May 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号