首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of this study is to demonstrate an application of 2-D high-performance planar chromatography-diode array detector (DAD) and HPLC-DAD after solid-phase extraction (SPE) for identification and quantitative analysis of pesticides (isoproturon, aziprotryne, hexazinone, flufenoxuron, methabenzthiazuron, procymidone, and α-cypermethrin) in Melissa officinalis L. (Labiatae) samples. The procedure described for the determination of compounds is inexpensive and can be applied to routine analysis of analytes in medical herbs' samples after preliminary cleanup and concentration by SPE. Average recoveries on C18 SPE cartridges of pesticides eluted with 5 mL tetrahydrofuran by the proposed HPLC-DAD method, before and after 2-D-high-performance planar chromatography separation of analytes from M. officinalis L. samples spiked with pesticide at a concentration level of 10 μg/g in plant material are presented. Method validation parameters for the quantification of pesticides by the proposed HPLC-DAD after SPE method are also presented.  相似文献   

2.
A study to identify the sources of background contamination from SPE, using a C-18 sorbent, and solid-phase microextraction (SPME), using a 70 microm carbowax/divinylbenzene (CW/DVB) fiber, was carried out. To determine the source of contamination, each material used in the procedure was isolated and examined for their contribution. The solid-phase column components examined were: sorbent material and frits, column housings and each solvent used to elute analytes off the column. The components examined in the SPME procedure were: SPME fiber, SPME vials, water (HPLC grade), and salt (sodium chloride) used to increase the ionic strength. The majority of the background contaminants from SPE were found to be from the SPE sorbent material and frits. The class of contaminants extracted during a blank extraction were phthalates and other plasticizers used during the manufacturing process. All had blank levels corresponding to measured concentrations below 2 ng/ mL, except for undecane, which had a concentration of 5.4 ng/mL. The most prevalent contaminants in the SPME blank procedure are 1,9-nonanediol, a mixture of phthalates and highly bis-substituted phenols. All the concentrations were below 2 ng/mL, with the exception of bis (2-ethylhexyl) phthalate, which had concentrations ranging from 5 to 20 ng/mL.  相似文献   

3.
黄微  李娜  徐瑞晗  李婷  李崇勇 《色谱》2018,36(12):1303-1310
建立了加速溶剂萃取(ASE)-固相萃取净化(SPE)-气相色谱-串联质谱(GC-MS/MS)同时测定茶叶中9种拟除虫菊酯类农药残留的方法。ASE萃取溶剂为丙酮-正己烷(1:1,v/v),萃取温度为100℃,萃取压力为10 MPa,加热时间为3 min,静态萃取时间为5 min,循环1次,冲洗体积为40%萃取池体积,氮气吹扫100 s。萃取结束后用Cleanert TPT固相萃取柱净化,净化液浓缩定容后,采用GC-MS/MS测定,外标法定量。9种拟除虫菊酯类农药在2~1000 μg/L范围内呈现良好的线性关系,相关系数(r2)均大于0.99,方法检出限为0.2~4.5 μg/kg,定量限为0.8~15.0 μg/kg。在绿茶、红茶空白基质中做加标回收试验,添加水平为0.02、0.1、0.4 mg/kg以及定量限水平,得到的平均回收率为69.87%~110.0%,相对标准偏差(RSD)为0.7%~11.2%。该方法背景干扰低、灵敏度高、重现性好、回收率稳定,适用于茶叶中拟除虫菊酯类农药残留量的检测。  相似文献   

4.
建立了一种固相萃取/高效液相色谱-串联质谱(SPE/HPLC-MS/MS)同时检测水体中24种农药的分析方法。样品用乙腈提取后,经固相萃取小柱富集净化。以乙腈-0.1%(体积分数)甲酸水溶液为流动相梯度洗脱,在电喷雾离子源正离子模式下(ESI+)采用多反应监测(MRM)模式检测。结果显示,24种农药在1~200μg/L范围内具有良好的线性关系,相关系数(r2)均不小于0.998,水样中3个添加水平(5、20、100μg/L)下的回收率为65.9%~127.8%,相对标准偏差(RSD)为0.7%~14.2%;方法检出限为0.05~0.71 ng/L。采用该方法对大连地区10个河流入海口及2个水库的水样进行了检测,12个站位的样品中共检出10种农药,质量浓度为0.2~558.3 ng/L。结果表明,所建立的SPE/HPLC-MS/MS方法高效、灵敏、可靠,可用于实际水体中多种农药的同时检测。  相似文献   

5.
建立了基于聚合物整体柱的固相萃取-高效液相色谱测定尿液中4种羟基多环芳烃(OH-PAHs)的分析方法。在注射器管中合成聚(甲基丙烯酸丁酯-乙二醇二甲基丙烯酸酯)整体柱(poly (BMA-co-EDMA)),并将其用于尿液中4种羟基多环芳烃的前处理,同时考察了上样浓度、淋洗液、洗脱液和洗脱体积对萃取效率的影响。结合高效液相色谱-荧光分析,4种羟基多环芳烃在各自的范围内线性关系良好(r≥0.9991);方法的检出限和定量限分别为0.06~0.09 ng/mL和0.20~0.30 ng/mL;日内(n=5)和日间(n=3)精密度分别为1.4%~5.3%和2.6%~7.3%。对焦炉工人尿液样品进行加标(3 ng/mL)回收试验,回收率为78.2%~117.0%。该固相萃取柱能够有效萃取和净化尿液中4种羟基多环芳烃,并且可以重复使用。该法简单、准确,可应用于尿液中羟基多环芳烃的分析。  相似文献   

6.
在系统优化固相萃取吸附剂填料类型、洗脱溶剂种类及体积的基础上,建立了蔬菜和水果中193种农药残留的气相色谱-质谱(GC-MS)检测方法。样品经乙腈均质提取,C18/PSA固相萃取柱净化,乙腈洗脱,GC-MS选择离子监测(SIM)模式检测,以磷酸三苯酯内标法定量。结果表明,130种农药在10~1000 μg/L、34种农药在20~1000 μg/L、26种农药在50~1000 μg/L、3种农药在100~1000 μg/L范围内线性关系良好,相关系数为0.9967~1.0000,方法检出限(以信噪比为3计)为0.04~8.26 μg/kg,添加回收率为71.6%~117.9%,相对标准偏差为3.0%~11.8%。该方法样品处理简单快速,相比其他多残留分析方法净化效果好,其灵敏度和选择性明显提高,适用于日常检测工作。  相似文献   

7.
A micro‐SPE technique was developed by fabricating a rather small package including a polypropylene membrane shield containing the appropriate sorbent. The package was used for the extraction of some triazine herbicides from aqueous samples. Solvent desorption was subsequently performed in a microvial and an aliquot of extractant was injected into GC‐MS. Various sorbents including aniline‐ortho‐phenylene diamine copolymer, newly synthesized, polypyrrole, multiwall carbon nanotube, C18 and charcoal were examined as extracting media. Among them, conductive polymers exhibited better performance. Influential parameters including extraction and desorption time, desorption solvent and the ionic strength were optimized. The developed method proved to be rather convenient and offers sufficient sensitivity and good reproducibility. The detection limits of the method under optimized conditions were in the range of 0.01–0.04 ng/mL. The RSDs at a concentration level of 0.1 ng/mL were obtained between 4.5 and 9.3% (n=5). The calibration curves of analytes showed linearity in the range of 0.05–10 ng/mL. The developed method was successfully applied to the extraction of selected triazines from real water samples. The whole procedure showed to be conveniently applicable and quite easy to manipulate.  相似文献   

8.
Validation experiments were conducted of a simple, fast, and inexpensive method for the determination of 229 pesticides fortified at 10-100 ng/g in lettuce and orange matrixes. The method is known as the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residues in foods. The procedure involved the extraction of a 15 g sample with 15 mL acetonitrile, followed by a liquid-liquid partitioning step performed by adding 6 g anhydrous MgSO4 plus 1.5 g NaCl. After centrifugation, the extract was decanted into a tube containing 300 mg primary secondary amine (PSA) sorbent plus 1.8 g anhydrous MgSO4, which constituted a cleanup procedure called dispersive solid-phase extraction (dispersive SPE). After a second shaking and centrifugation step, the acetonitrile extract was transferred to autosampler vials for concurrent analysis by gas chromatography/mass spectrometry with an ion trap instrument and liquid chromatography/tandem mass spectrometry with a triple quadrupole instrument using electrospray ionization. Each analytical method was designed to analyze 144 pesticides, with 59 targeted by both instruments. Recoveries for all but 11 of the analytes in at least one of the matrixes were between 70-120% (90-110% for 206 pesticides), and repeatabilities typically <10% were achieved for a wide range of fortified pesticides, including methamidophos, spinosad, imidacloprid, and imazalil. Dispersive SPE with PSA retained carboxylic acids (e.g., daminozide), and <50% recoveries were obtained for asulam, pyridate, dicofol, thiram, and chlorothalonil. Many actual samples and proficiency test samples were analyzed by the method, and the results compared favorably with those from traditional methods.  相似文献   

9.
杨松  邹楠  高云  许乐园  张文文  潘灿平  慕卫 《色谱》2020,38(7):826-832
建立了固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)同时检测环境水体中不同极性范围的18种农药残留的分析方法。样品经大体积固相萃取装置,以2 mL/min的速率通过Cleanrt®-PEP固相萃取柱进行净化和富集,浓缩50倍后结合UPLC-MS/MS检测,外标法定量。研究表明,目标化合物在0.5~50 μg/L范围内线性关系良好,线性相关系数(R2)≥0.995;在10、100和1000 ng/L 3个添加水下,18种农药在3种不同环境水体中的平均回收率为71.3%~105.9%,相对标准偏差(RSD,n=5)为1.3%~9.9%;定量限(LOQ)均为10 ng/L。该方法应用于泰安市区周围水环境的检测,各采集位点均未检出农药残留。该方法具有净化效果好、通用性强、灵敏度高、准确度高和操作简单等优点,适用于环境水体中18种农药的残留检测。  相似文献   

10.
固相萃取气相色谱-质谱法测定蔬菜中含氮杂环农药残留   总被引:1,自引:0,他引:1  
建立了固相萃取(SPE)气相色谱-质谱(GC-MS)同时测定蔬菜中敌菌灵、噻菌灵、氟虫腈和噻嗪酮4种含氮杂环农药残留量的分析方法.蔬菜样品用乙腈匀浆提取后经弗罗里硅(Florisil)固相萃取柱净化.采用GC-MS检测,在选择离子检测(SIM)模式下以特征离子定量,用全扫描(SCAN)方法确证.方法具有良好的线性关系(R≥0.9953)和重现性(峰面积RSD≤9.1%),最低检出限(S/N=3)在3.6~1.8×10-4μg/mL之间,4种农药添加回收率在76.1%~116.4%之间,RSD≤9.8%,用于实际样品菜心的检测,结果满意.方法操作简单,灵敏度高,可作为测定各种蔬菜基质中含氮杂环农药残留量的确证方法.  相似文献   

11.
The ion-pair solid-phase extraction (SPE) of 4-alkylphenols followed by derivatization with pentafluoropyridine is demonstrated. Under alkaline conditions, the 4-alkylphenols could be efficiently adsorbed on a C18 SPE cartridge conditioned with an ion-pair reagent, tetra-n-hexylammonium bromide. The ion pairs, ammonium phenolates, formed on the C18 solid phase, were eluted with a solvent containing the derivatizing reagent, pentafluoropyridine, and completely derivatized during the elution. After optimization of the adsorption and derivatization, we established a method for the determination of the 4-alkylphenols in water samples. The method showed good linearity between 20 and 1000 ng (200-10,000 ng for nonylphenol). By processing 20-ml samples, the method detection limits (MDL) were in the range of 5.2-8.9 ng/l for the 4-alkylphenols (76 ng/l for nonylphenol). To evaluate its applicability to a real aqueous matrix, several river water samples were analyzed.  相似文献   

12.
A robust procedure for the determination of 16 US EPA PAHs in both aqueous (e.g. wastewaters, industrial discharges, treated effluents) and solid samples (e.g. suspended solids and sludge) from a wastewater treatment plant (WWTP) is presented. Recovery experiments using different percentages of organic modifier, sorbents and eluting solvent mixtures were carried out in Milli-Q water (1000 mL) spiked with a mixture of the PAH analytes (100 ng/L of each analyte). The solid phase extraction (SPE) procedures applied to spiked waste water samples (1000 mL; 100 ng/L spiking level) permitted simultaneous recovery of all the 16PAHs with yields >70% (6-13% RSD). SPE clean up procedures applied to sewage and stabilized sludge extracts, showed percent recoveries in the range 73-92% (7-13% RSD) and 71-89% (7-12% RSD), respectively. The methods were used for the determination of PAHs in aqueous and solid samples from the WWTP of Fusina (Venice, Italy). Mean concentrations, as the sum of the 16PAHs in aqueous and suspended solid samples, were found to be approx. in the 1.12-4.62 microg/L range. Sewage and stabilized sludge samples contained mean PAH concentrations, as sum of 16 compounds, in the concentration range of 1.44-1.26 mg/kg, respectively. Extraction and clean up procedures for sludge samples were validated using EPA certified reference material IRM-104 (CRM No. 912). Instrumental analyses were performed by coupling HPLC with UV-diode array detection (UV-DAD) and fluorescence detection (FLD).  相似文献   

13.
建立了茶叶中有机磷、有机氯、拟除虫菊酯类共33种农药残留的分析方法。样品以丙酮-二氯甲烷(体积比为1:1)为提取剂经加速溶剂方法萃取,提取液用凝胶渗透色谱净化除去大部分的色素、脂类和蜡质,再用Carb-NH2小柱和Florisil小柱净化。采用气相色谱法分析、外标法定量、气相色谱-质谱法(GC-MS)定性。加标水平为0.05 mg/kg时,大部分农药的回收率为70%~120%,相对标准偏差小于20%。方法的检测限为0.005~0.05 mg/kg (以10倍信噪比计)。该方法的提取效率高,准确灵敏,目前已应用于出口茶叶中农药残留的日常检测。大量实际样品的检测结果表明,此方法适于出口茶叶中农药残留检测实际工作的需要。  相似文献   

14.
Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography and mass spectrometry (GC-MS) was applied to the determination of six organophosphorous pesticides (OPPs) in water samples. The analytes included in this study were prophos, diazinon, chlorpyrifos methyl, methyl parathion, fenchlorphos and chlorpyrifos. Several extraction and dispersion solvents were tested for dispersive liquid-liquid microextraction of these analytes and the best results were obtained using chloroform as extraction solvent and 2-propanol as dispersion solvent. Calibration curves of the analytes in water samples were constructed in the concentration range from 100 to 1100 ng/L for prophos, diazinon and methyl parathion and in the range from 100 to 1000 ng/L for chlorpyrifos methyl, fenchlorphos and chlorpyrifos. Limits of detection (LODs) were in the range of 1.5-9.1 ng/L and limits of quantification (LOQs) were in the range of 5.1-30.3 ng/L, below the maximum admissible level for drinking water. Relative standard deviations (RSDs) were between 6.5 and 10.1% in the concentration range of 100-1000 ng/L. The relative recoveries (%RRs) of tap, well and irrigation water samples fortified at 800 ng/L were in the range of 46.1-129.4%, with a larger matrix effect being detected in tap water.  相似文献   

15.
A solid-phase extraction (SPE) procedure with the use of superparamagnetic Fe(3)O(4) nanoparticles as extracting agent was developed for HPLC-ESI-MS/MS analysis. Four most heavily used triazine pesticides (herbicides) were taken as the test compounds. The NPs showed an excellent capability to retain the compounds tested, and a quantitative extraction was achieved within 10min under the testing conditions, i.e. 100 microL NP solution was added to 400 mL sample in a beaker with stirring. After extraction, the superparamagnetic NPs were easily collected by using an external magnet. Very importantly, analytes retained on the Fe(3)O(4) NPs could be quantitatively recovered by dissolving the NPs with an HCl solution, allowing subsequent HPLC-ESI-MS/MS quantification. A capillary HPLC-ESI-MS/MS method with the present NP-based SPE procedure was developed for the determination of triazines including atrazine, prometryn, terbutryn, and propazine. Atrazine-d(5) was used as internal standard. The method had an LOD of 10 pg/mL atrazine, and a linear calibration curve over a range from 30 pg to 50.0 ng/mL. Simultaneous determination of the four triazine pesticides in water samples taken from local lakes was demonstrated.  相似文献   

16.
Fung YS  Mak JL 《Electrophoresis》2001,22(11):2260-2269
A new analytical procedure using a two-step sample preconcentration (solid-phase extraction (SPE) and field-amplified sample stacking) prior to separation by micellar electrokinetic capillary chromatography was developed for the determination of 14 pesticides such as aldicarb, carbofuran, isoproturon, chlorotoluron, metolachlor, mecoprop, dichlorprop, MCPA, 2,4-D, methoxychlor, TDE, DDT, dieldrin, and DDE in drinking water. Good recoveries of pesticides were obtained using SPE with sample pH adjusted to 2-3. Field-amplified sample stacking was found to give enrichment factors up to 30-fold preconcentration of various pesticides under reversed polarity at -2 kV for 50 s. The optimized background electrolyte (BGE) consisted of 50 mM sodium dodecyl sulfate (SDS), 10 mM borate buffer, 15 mM beta-cyclodextrin (beta-CD), and 22% acetonitrile at pH 9.6, running was under 25 kV and detection at 202 nm. Good linearity was obtained for all pesticides with detection limits down to 0.04-0.46 ng/mL and a working range of 0.1-40 ng/mL. The repeatabilities of migration time and peak area were satisfactory with relative standard deviations (RSDs) between 0.66 and 13.6% and 4.1 and 28%, respectively. All pesticides except dieldrin were found to be detected at concentrations at least tenfold lower than the World Health Organization (WHO) guideline values. The analytical procedure developed offers an economic method for fast screening of multiple pesticide residues in drinking water for health protection. It had been applied to determine carbofuran and MCPA in agricultural run-off water samples, giving satisfactory repeatabilities of 10 and 12%, respectively, with n=5 for the determination of pesticides in contaminated water samples.  相似文献   

17.
A sensitive and rapid derivatization method for the simultaneous determination of 1,3-dichloro-2-propanol (1,3-DCP) and 3-chloropropane-1,2-diol (3-MCPD) in water samples has been developed. The aim was to research the optimal conditions of the derivatization process for two selected reagents. A central composite design was used to determine the influence of derivatization time, derivatization temperature and reagent volume. A global desirability function was applied for multi-response optimization. The analysis was performed by gas chromatography-mass spectrometry. During the optimization of the extraction procedure, four different types of solid-phase extraction (SPE) columns were tested. It was demonstrated that the Oasis HLB cartridge produced the best recoveries of the target analytes. The pH value and the salinity were investigated using a Doehlert design. The best results for the SPE of both analytes were obtained with 1.5 g of NaCl and pH 6. The proposed method provides high sensitivity, good linearity (R(2)≥0.999) and repeatability (relative standard deviations % between 2.9 and 3.4%). Limits of detection and quantification were in the range of 1.4-11.2 ng/mL and 4.8-34.5 ng/mL, respectively. Recoveries obtained for water samples were ca. 100% for 1,3-DCP and 3-MCPD. The method has been successfully applied to the analysis of different samples including commercially bottled water, an influent and effluent sewage.  相似文献   

18.
Summary Three polymeric adsorbents, two of which had been chemically modified with different hydrophilic functional moieties and the third, which was the corresponding unmodified polystyrene-divinylbenzene (PSDVB) resin, were compared for solid-phase extraction (SPE) of several polar pesticides and phenolic compounds from water samples. The SPE system was online coupled to a liquid chromatograph with UV detector. Chemical modification of the PS-DVB resin with either 2-carboxy-3/4-nitrobenzoyl or 2,4-dicarboxybenzoyl, improved the efficiency of the SPE process by increasing polar interactions with the analytes. The adsorbent with the nitro group gave higher recoveries, mainly for the most polar analytes. This adsorbent enabled 100 mL river water to be preconcentrated to determine the target analytes in this matrix.  相似文献   

19.
Automated online and off-line solid-phase extraction (SPE) methods coupled to isotope dilution-high-performance liquid chromatography-tandem mass spectrometry for measuring four isoflavones (daidzein, genistein, equol, and O-desmethylangolensin) and two lignans (enterolactone and enterodiol) in urine are developed. The SPE recoveries for the online SPE method are excellent for most analytes (83-94%) and somewhat lower for enterolactone (61%). The recoveries for all analytes with the off-line SPE method are also very good (65-80%). The limit of detection is lower for the online method (0.1-0.7 ng/mL) than for the off-line method (0.4-3.3 ng/mL). Similarly, the reproducibility is generally better for the online method [coefficient of variation (CV) of 4-12%) than for the off-line method, except for enterolactone, which has a higher CV (18-19%) that is consistent with its lower online SPE recovery. Both methods are adequate for analyzing a large number of samples for epidemiological studies to assess the prevalence of human exposure to isoflavones and lignans.  相似文献   

20.
The European Union specificies that drinking water can contain pesticide residues at concentrations of up to 0.1 μg/L each and 0.5 μg/L in total, and that 1–3 μg/L of pesticides can be present in surface water, but the general idea is to keep discharges, emissions and losses of priority hazardous substances close to zero for synthetic substances. Therefore, in order to monitor pesticide levels in water, analytical methods with low quantification limits are required. The method proposed here is based on solid phase extraction (SPE) followed by gas chromatography with a nitrogen–phosphorous detector (GC-NPD). During method development, six organophosphate pesticides (azinphos-ethyl, chlorfenvinphos, chlorpyriphos, ethoprophos, fenamiphos and malathion) and two organonitrogen pesticides (alachlor and deltamethrin) were considered as target analytes. Elution conditions that could influence the efficiency of the SPE were studied. The optimized methodology exhibited good linearity, with determination coefficients of better than 0.996. The analytical recovery for the target analytes ranged from 70 to 100%, while the within-day precision was 4.0–11.5 %. The data also showed that the nature of the aqueous matrice (ultrapure, surface or drinking water) had no significant effect on the recovery. The quantification limits for the analytes were found to be 0.01–0.13 μg/L (except for deltamethrin, which was 1.0 μg/L). The present methodology is easy, rapid and gives better sensitivity than solvent drop microextraction for the determination of organonitrogen and organophosphate pesticides in drinking water at levels associated with the legislation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号