首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method was established using hollow fiber-liquid phase microextraction(HF-LPME) followed by high performance liquid chromatography(HPLC) to determine the concentration of the free(unbound) drug in the solution of the drug and protein. Measurements of drug-protein binding ratios and free drug concentrations were then analyzed with the Klotz equation to determine the equilibrium binding constant and number of binding sites for drug-protein interaction. The optimized method allows one to perform the efficient extraction and separation of free drug from protein-bound drug, protein, and other interfering substances. This approach was used to characterize the binding of the anticholinergic drugs atropine sulfate and scopolamine hydrobromide to proteins in human plasma and bovine serum albumin(BSA). The results demonstrate the utility of HF-LPME method for measuring free drug concentrations in protein-drug mixtures and determining the protein binding parameters of a pharmacologically important class of drugs.  相似文献   

2.
尿样中海洛因代谢物的检验   总被引:4,自引:2,他引:2  
使用自制的固相微萃取装置,对尿液中海洛因代谢物6-单乙酰吗啡进行萃取,在装有衍生化试剂的密封玻璃瓶内顶空衍生,用GC-MS检测,取得了较好的效果。方法简便、快速,可用于吸毒者的确认。  相似文献   

3.
建立了三相中空纤维膜液相微萃取-高效液相色谱(HF-LPME-HPLC)方法,用于分析测定水中痕量双酚A的含量.设计了三相中空纤维膜液相微萃取系统,优化的HP-LPME最佳萃取条件为:萃取剂为正辛醇,接受相NaOH浓度为0.09 mol/L,样品溶液pH=4.0,NaC1加入量为30 g/L,搅拌速度为900 r/min,萃取时间为60 min.萃取后取20 μL接受相进行色谱分析.在最佳萃取条件下,方法的线性范围为0.5~200 μg/L(r> 0.999),检出限(信噪比为3)为0.2 μg/L;富集因子为241;方法RSD<3.2% (n=3).在实际环境水样中添加5,20和50μg/L的双酚A标准物质,加标平均回收率为92.8%~101.9%.表明本方法可用于水中痕量双酚A的快速准确测定.  相似文献   

4.
The present work demonstrates the successful application of automated biocompatible in-tube solid-phase microextraction coupled with liquid chromatography (in-tube SPME/LC) for determination of interferon alpha(2a) (IFN α(2a)) in plasma samples for therapeutic drug monitoring. A restricted access material (RAM, protein-coated silica) was employed for preparation of a lab-made biocompatible in-tube SPME capillary that enables the direct injection of biological fluids as well as the simultaneous exclusion of macromolecules by chemical diffusion barrier and drug pre-concentration. The in-tube SPME variables, such as sample volume, draw/eject volume, number of draw-eject cycles, and desorption mode were optimized, to improve the sensitivity of the proposed method. The IFN α(2a) analyses in plasma sample were carried out within 25min (sample preparation and LC analyses). The response of the proposed method was linear over a dynamic range, from 0.06 to 3.0MIUmL(-1), with correlation coefficient equal to 0.998. The interday precision of the method presented coefficient of variation lower than 8%. The proposed automated method has adequate analytical sensitivity and selectivity for determination of IFN α(2a) in plasma samples for therapeutic drug monitoring.  相似文献   

5.
An improved solvent bar microextraction (SBME) combined with HPLC was applied to rapidly determine oleanolic acid (OA) and ursolic acid (UA) in Chinese medicinal herbs (CMHs), and to investigate drug–protein binding. Variables influencing SBME were investigated and optimized. Under optimal conditions, the linear ranges of 3.6–1,820 ng mL?1 for OA and 4.2–2,080 ng mL?1 for UA were obtained with square correlation coefficients of 0.9996 and 0.9997, respectively. The detection limits were 1.3 ng mL?1 for OA and 1.5 ng mL?1 for UA. The relative standard deviations were lower than 9.4 %. The protein-binding rates, the numbers of binding sites, and the binding constants of OA and UA were also obtained via the method. It has been demonstrated that SBME can not only be a simple, rapid and efficient sample preparation method for determination of active components from CMHs but also be a potential research protocol for protein-binding interactions.  相似文献   

6.
In this research, a novel microextraction technique based on ionic liquids (ILs) termed in modified-cold induced aggregation microextraction (M-CIAME) was used for determination of palladium in saline solution. 1-(2-pyridylazo)-2-naphtol (PAN) was chosen as the complexing agent. Analysis was carried out using fibre optic-linear array detection spectrophotometric method which is suitable for analyte determination after microextraction. M-CIAME is based on phase separation phenomenon of ionic liquids in aqueous solutions. This method is simple and rapid for extraction and preconcentration of metal ions from water samples. It can be applied for the sample solutions containing much higher concentrations of salt, in comparison with CIAME (cold induced aggregation microextraction). Furthermore, this technique is much safer in comparison with other microextraction techniques in which organic solvent is used as the extraction solvent. Some effective parameters on extraction and complex formation such as amount of IL, salt effect, pH, concentration of the chelating agent and the other parameters were optimised. Under the optimum conditions, the limit of detection (LOD) and repeatability, expressed as relative standard deviation (n?=?5) for 20?ng?mL?1 of palladium were 0.4?ng?mL?1 and 2.23%, respectively. The extraction percentage was 86%.  相似文献   

7.
A miniaturized methodology for the determination of phosphate in waters has been developed by combining directly suspended droplet microextraction (DSDME) with microvolume spectrophotometry. The method is based on the extraction of the ion pair formed between 12-molybdophosphate and malachite green onto a microdrop of methyl isobutyl ketone and subsequent spectrophotometric determination with no dilution. An enrichment factor of 325 was obtained after 7.5 min of microextraction. The detection limit was 6.1 nM phosphate and the repeatability, expressed as relative standard deviation, was 2.7% (n = 6). The method was successfully applied to the determination of dissolved reactive phosphorus in different freshwater samples.  相似文献   

8.
Recently the connection between oxidative stress and various diseases, including cancer and Alzheimer's, attracts notice as a pathway suitable for diagnostic purposes. 8‐Oxo‐deoxyguanosine and 8‐oxo‐deoxyadenosine produced from the interaction of reactive oxygen species with DNA become prominent as biomarkers. Several methods have been developed for their determination in biofluids, including solid‐phase extraction and enzyme‐linked immunosorbent assays. However, still, there is a need for reliable and fast analytical methods. In this context, solid‐phase microextraction offers many advantages such as flexibility in geometry and applicable sample volume, as well as high adaptability to high‐throughput sampling. In this study, a solid‐phase microextraction method was developed for the determination of 8‐oxo‐deoxyguanosine and 8‐oxo‐deoxyadenosine in biofluids. The extractive phase of solid‐phase microextraction consisted of hydrophilic–lipophilic balanced polymeric particles. In order to develop a solid‐phase microextraction method suitable for the determination of the analytes in saliva and urine, several parameters, including desorption solvent, desorption time, sample pH, and ionic strength, were scrutinized. Analytical figures of merit indicated that the developed method provides reasonable interday and intraday precisions (<15% in both biofluids) with acceptable accuracy. The method provides a limit of quantification for both biomarkers at 5.0 and 10.0 ng/mL levels in saliva and urine matrices, respectively.  相似文献   

9.
Single-drop microextraction (SDME), an emerging miniaturised extraction technique, was for the first time combined with multiple headspace extraction (MHE) to enable the quantitative determination of volatiles in solid matrixes by SDME technique. The concept of multiple headspace single-drop microextraction (MHS-SDME) was then applied for quantitative determination of styrene in polystyrene (PS) samples. Good linearity for the multiple headspace extraction was obtained when the migration of styrene was facilitated by grinding the samples and incubating them for 1 h at 150 degrees C prior the first extraction. Two microlitres of butyl acetate was used as the single-drop microextraction solvent and the extraction time was 5 min per cycle. The relative standard deviation (RSD) for single-drop microextraction of styrene standard at n=6 was 7.6%. Linearity was shown for styrene concentrations between 0.005 and 0.75 microg/ml (R2=0.999). This corresponds to total amount of styrene between 0.1 and 15 microg. The limit of quantitation for styrene standard at S/N 10 was 0.005 microg/ml. The developed method was validated against and showed good agreement with an earlier reported dissolution-precipitation method.  相似文献   

10.
A new, rapid, and efficient microextraction technique named vortex‐assisted natural deep eutectic solvent microextraction has been developed for the preconcentration and determination of orthophosphate in real water samples. The method is based on the formation of the phosphomolybdenium blue complex followed by proposed microextraction procedure and subsequent spectrophotometric determination in a microcell. Screening study for the optimal composition of natural deep eutectic solvent was initially performed with different solvents, including choline chloride as hydrogen bond acceptor and different hydrogen bond donors. A ternary mixture of glucose‐choline chloride‐water was used as the most efficient extraction solvent. Response surface methodology based on the central composite design was used to optimize experimental parameters. Under optimal conditions, the calibration graph for orthophosphate determination was linear over the range of 2.0–80.0 µg/L (correlation coefficient of 0.9971) with a detection limit of 0.2 µg/L. The repeatability, reproducibility, and relative error values of the method were below 7%, indicating acceptable precision and accuracy. This approach, using natural deep eutectic solvent as an eco‐friendly solvent with high solubilization power and vortex mixing as an alternative energy source, represents a promising choice for a green separation and preconcentration methodology for determination of orthophosphate in real water samples.  相似文献   

11.
分别采用PDMS、PDMS/DVB、CWX/DVB三种萃取头,应用固相微萃取与高效液相色谱联用技术(SPME-HPLC)分析了水溶液中的痕量酞酸二(2-乙基已基)酯(DE-HP)。实验发现,PDMS/DVB萃取头的萃取效果较其他两种萃取头理想;对SPME的萃取条件进行了优化,建立了水中痕量DEHP的SPME-HPLC分析方法,并对实际水样进行了分析。该方法的线性范围为0.62~15.60mg/L,相关系数为0.9991,检出限为0.06mg/L(3σ,n=11),相对标准偏差(RSD)为3.3%,回收率为89.9%~101.3%。  相似文献   

12.
A novel analytical method is presented for the determination of chlorophenols in water. This method involves pre-concentration by solid-phase microextraction (SPME) and an external desorption using a micellar medium as desorbing agent. Final analysis of the selected chlorophenols compounds was carried out by high-performance liquid chromatography (HPLC) with diode array detection (DAD). Optimum conditions for desorption, using the non-ionic surfactant polyoxyethylene 10 lauryl ether (POLE), such as surfactant concentration and time were studied. A satisfactory reproducibility for the extraction of target compounds, between 6 and 15%, was obtained, and detection limits were in the range of 1.1-5.9ngmL(-1). The developed method is evaluated and compared with the conventional one using organic solvent as a desorbing agent. The method was successfully applied to the determination of chlorophenols in water samples from different origin. This study has demonstrated that solid-phase microextraction with micellar desorption (SPME-MD) can be used as an alternative to conventional SPME method for the extraction of chlorophenols in water samples.  相似文献   

13.
A selective method using three-phase liquid-phase microextraction (LPME) in conjunction with LC-MS-MS was devised for the enantioselective determination of chloroquine and its n-dealkylated metabolites in plasma samples. After alkalinization of the samples, the analytes were extracted into n-octanol immobilized in the pores of a polypropylene hollow fiber membrane and back extracted into the acidic acceptor phase (0.1 M TFA) filled into the lumen of the hollow fiber. Following LPME, the analytes were resolved on a Chirobiotic V column using methanol/ACN/glacial acetic acid/diethylamine (90:10:0.5:0.5 by volume) as the mobile phase. The MS detection was carried out using multiple reaction monitoring with ESI in the positive ion mode. The optimized LPME method yielded extraction recoveries ranging from 28 to 66%. The method was linear over 5-500 ng/mL and precision (RSD) and accuracy (relative error) values were below 15% for all analytes. The developed method was applied to the determination of the analytes in rat plasma samples after oral administration of the racemic drug.  相似文献   

14.
A novel analytical approach has been developed for the determination of clozapine and its metabolites in dried blood spots on filter paper, using a chromatographic method coupled with a microextraction by packed sorbent procedure. The analytes were separated on a RP-C18 column using a mobile phase composed of 20% methanol, 16% acetonitrile and 64% aqueous phosphate buffer. Coulometric detection was used, setting the guard cell at +0.050 V, the first analytical cell at -0.200 V and the second analytical cell at +0.500 V. Clozapine and its metabolites were extracted from dried blood spots with phosphate buffer and, then, a microextraction by packed sorbent procedure for the sample clean-up was implemented obtaining good extraction yields. The calibration curve was linear over the 2.5-1000 ng mL(-1) blood concentration ranges for all the analytes. The method validation gave satisfactory results in terms of sensitivity, precision, selectivity and accuracy. The analytical method was successfully applied to dried blood spots from several psychiatric patients for therapeutic drug monitoring purpose.  相似文献   

15.
Fan Y  Feng YQ  Da SL  Gao XP 《The Analyst》2004,129(11):1065-1069
Ketamine was used for anaesthesia originally but has emerged as an abused drug in recent years. The prevalence of ketamine abuse demands a direct and rapid determination method. It is known that in-tube solid phase microextraction (in-tube SPME) can perform extraction with a capillary linked directly to a HPLC system, providing an automated and accurate extraction procedure. In this paper, an in-tube SPME coupled to HPLC method was developed for the determination of ketamine in urine samples with a poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column as the extraction phase, which is expected to provide higher extraction efficiency than open tubular capillaries. After optimizing the extraction conditions, ketamine was extracted directly from urine samples in a wide dynamic linear range of 50-10,000 ng mL(-1), with the detection limit obtained as 6.4 ng mL(-1). The intra-day and inter-day precision for the method was 1.6% and 1.7%, respectively. The urine samples from suspect addicts have been successfully analyzed within 20 min. The re-usability of the monolithic column was also confirmed as no decrease of the extraction efficiency was shown after urine extraction.  相似文献   

16.
A simple, rapid, and sensitive method for the determination of naproxen and ibuprofen in complex biological and water matrices (cow milk, human urine, river, and well water samples) has been developed using ultrasound‐assisted magnetic dispersive solid‐phase microextraction. Magnetic ethylendiamine‐functionalized graphene oxide nanocomposite was synthesized and used as a novel adsorbent for the microextraction process and showed great adsorptive ability toward these analytes. Different parameters affecting the microextraction were optimized with the aid of the experimental design approach. A Plackett–Burman screening design was used to study the main variables affecting the microextraction process, and the Box–Behnken optimization design was used to optimize the previously selected variables for extraction of naproxen and ibuprofen. The optimized technique provides good repeatability (relative standard deviations of the intraday precision 3.1 and 3.3, interday precision of 5.6 and 6.1%), linearity (0.1–500 and 0.3–650 ng/mL), low limits of detection (0.03 and 0.1 ng/mL), and a high enrichment factor (168 and 146) for naproxen and ibuprofen, respectively. The proposed method can be successfully applied in routine analysis for determination of naproxen and ibuprofen in cow milk, human urine, and real water samples.  相似文献   

17.
基于中空纤维液相微萃取技术,建立了绿豆芽中吲哚类植物生长素的荧光检测方法。通过L9(34)正交实验,对中空纤维液相微萃取条件进行优化,得到的优化条件为:样品溶液的p H值调为4.0,萃取溶剂为正辛醇,接受相为p H 12.0的Na OH,搅拌速度为1 000 r/min,萃取时间为60 min。在最优萃取条件下,吲哚类植物生长素的富集倍数可达92倍。供体相中吲哚类植物生长素的质量浓度在1.71~50.0 mg/L范围内呈良好的线性关系,相关系数为0.997 9,检出限(S/N=3)为0.57 mg/L,样品的加标回收率为88.6%~100.7%,相对标准偏差(RSD)不大于4.8%。该方法操作简单,环境友好,可用于绿豆芽中吲哚类植物生长素含量的准确快速测定。  相似文献   

18.
Therapeutic drug monitoring (TDM), as part of clinical process of medical treatments, is commonly used to maintain 'therapeutic' drug concentrations. TDM is useful to identify the causes of unwanted or unexpected responses, to prevent unnecessary diagnostic testing, to improve clinical outcomes, and even to save lives. The determination of drug concentration in blood samples requires an excellent sample preparation procedure. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low or no solvent consumption. Microextraction techniques, such as liquid- and solid-phase microextraction, have these advantages over the traditional techniques. This paper reviews the recent developments in microextraction techniques used for drug monitoring in serum, plasma or blood samples.  相似文献   

19.
A new method was developed for determination of methomyl in water samples by combining a dispersive liquid-liquid microextraction (DLLME) technique with HPLC-variable wavelength detection (VWD). In this extraction method, 0.50 mL of methanol (as dispersive solvent) containing 20.0 microL of tetrachloroethane (as extraction solvent) was rapidly injected by syringe into a 5.00-mL water sample containing the analyte, thereby forming a cloudy solution. After phase separation by centrifugation for 2 min at 4000 rpm, the enriched analyte in the settled phase (8 +/- 0.2 microL) was at the bottom of the conical test tube. A 5.0-microL volume of the settled phase was analyzed by HPLC-VWD. Parameters such as the nature and volume of the extraction solvent and the dispersive solvent, extraction time, and the salt concentration were optimized. Under the optimum conditions, the enrichment factor could reach 70.7 for a 5.00-mL water sample and the linear range, detection limit (S/N = 3), and precision (RSD, n = 6) were 3-5000 ng/mL, 1.0 ng/mL, and 2.6%, respectively. River and lake water samples were successfully analyzed by the proposed method. Comparison of this method with solid-phase extraction, solid-phase microextraction, and single-drop microextraction, indicates that DLLME combined with HPLC-VWD is a simple, fast, and low-cost method for the determination of methomyl, and thus has tremendous potential in trace analysis of methomyl in natural waters.  相似文献   

20.
We have developed a synergic microextraction procedure based on ionic liquid for the pre‐concentration and determination of glucocorticoids in water samples. Using nonionic surfactant Triton X‐100 (TX‐100) as synergic reagent, 1‐butyl‐3‐methylimidazolium hexa‐fluorophosphate accomplished extraction rapidly without heating in water bath. One key property of ionic liquids that highlights their potential is their wide liquid temperature range. The improved extraction was named as ionic liquid supported vortex‐assisted synergic microextraction. Compared with the traditional liquid–liquid extraction and cloud point extraction, ionic liquid supported vortex‐assisted synergic microextraction was accomplished in 8 min with considerably high recovery. The proposed method greatly improved the sensitivity of HPLC for the determination of glucocorticoids. The results obtained indicated a good linearity with the correlation coefficient of 0.997 over the range of 0.6–300 ng/mL and high sensitivity with LODs of 4.11, 9.19, and 7.50 ng/mL for hydrocortisone butyrate, beclomethasone dipropionate, and nandrolone phenylpropionate, respectively. The RSD of the method was 1.57–1.81% (n = 6) with enrichment factor of 99.85, and good recovery (≥97.24%). The method was successfully applied to the determination of glucocorticoids in mineral water, water of Dianchi lake, and tap water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号