首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of 2-pyridyl pyrazoles 1a and 1-5 with various functional groups attached to either pyrazole or pyridyl moieties have been strategically designed and synthesized in an aim to probe the hydrogen bonding strength in the ground state versus dynamics of excited-state intramolecular proton transfer (ESIPT) reaction. The title compounds all possess a five-membered-ring (pyrazole)N-H···N(pyridine) intramolecular hydrogen bond, in which both the N-H bond and the electron density distribution of the pyridyl nitrogen lone-pair electrons are rather directional, so that the hydrogen bonding strength is relatively weak, which is sensitive to the perturbation of subtle chemical substitution and consequently reflected from the associated ESIPT dynamics. Various approaches such as (1)H NMR (N-H proton) to probe the hydrogen bonding strength and absorption titration to assess the acidity-basicity property were made for all the title analogues. The results, together with supplementary support provided by a computational approach, affirm that the increase of acidity (basicity) on the hydrogen bonding donor (acceptor) sites leads to an increase of hydrogen-bonding strength among the title 2-pyridyl pyrazoles. Luminescence results and the associated ESIPT dynamics further reveal an empirical correlation in that the increase of the hydrogen bonding strength leads to an increase of the rate of ESIPT for the title 2-pyridyl pyrazoles, demonstrating an interesting relationship among N-H acidity, hydrogen bonding strength, and the associated ESIPT rate.  相似文献   

2.
The influence of solvent, temperature, and viscosity on the phototautomerization processes of a series of o-hydroxyarylbenzazoles was studied by means of ultraviolet-visible (UV-vis) absorption spectroscopy and steady-state and time-resolved fluorescence spectroscopy. The compounds studied were 2-(2'-hydroxyphenyl)benzimidazole (HBI), 2-(2'-hydroxyphenyl)benzoxazole (HBO), 2-(2'-hydroxyphenyl)benzothiazole (HBT), 2-(3'-hydroxy-2'-pyridyl)benzimidazole (HPyBI), and the new derivative 2-(3'-hydroxy-2'-pyridyl)benzoxazole (HPyBO), this one studied in neutral and acid media. All of these compounds undergo an excited-state intramolecular proton transfer (ESIPT) from the hydroxyl group to the benzazole N3 to yield an excited tautomer in syn conformation. A temperature- and viscosity-dependent radiationless deactivation of the tautomer has been detected for all compounds except HBI and HPyBI. We show that this radiationless decay also takes place for 2-(3-methyl-1,3-benzothiazol-3-ium-2-yl)benzenolate (NMeOBT), the N-methylated analog of the tautomer, whose ground-state structure has anti conformation. In ethanol, the radiationless decay shows intrinsic activation energy for HPyBO and HBO; however, it is barrierless for HBT and NMeOBT and controlled instead by the solvent dynamics. The relative efficiency of the radiationless decay in the series of molecules studied supports the hypothesis that this transition is connected with a charge-transfer process taking place in the tautomer, its efficiency being related to the strength of the electron donor (dissociated phenol or pyridinol moiety) and electron acceptor (protonated benzazole). We propose that the charge transfer is associated with a large-amplitude conformational change of the tautomer, the process leading to a nonfluorescent charge-transfer intermediate. The previous ESIPT step generates the structure with the suitable redox pair to undergo the charge-transfer process; therefore, an excited-state intramolecular coupled proton and charge transfer takes place for these compounds.  相似文献   

3.
2-(2′,6′-Dihydroxyphenyl)benzoxazole (DHBO) has been synthesized by using palladium-catalyzed oxidative cyclization. The compound utilizes both O-H···N and O-H···O bonds to ensure a coplanar structure between the benzoxazole and phenol fragments. Optical comparison with the parent compound 2-(2′-hydroxyphenyl)benzoxazole (HBO) reveals that the dual hydrogen bonding in DHBO plays an essential role in raising the desirable keto emission for ESIPT and tuning the polarity sensitivity toward the molecular environment. DHBO also exhibits a higher quantum yield (?fl = 0.108 in methanol) than HBO (?fl = 0.0025) in the same solvent.  相似文献   

4.
Two Schiff bases: 2-(1-(methylimino)methyl)-phenol (SMA) and its chlorosubstituted derivative 2-(1-(methylimino)methyl)-6-chlorophenol (SMAC), and SMA complexes with water were studied by infrared matrix isolation spectroscopy and DFT/B3LYP/6-311G++(2d,2p) quantum chemical calculations. SMA and SMAC bases trapped in an argon matrix from the vapor above the liquid and solid samples have the most stable enol conformation with intramolecular O-H···N bonding. Irradiation (λ > 320 nm) leads in both bases to a rotational isomerization reaction in which the scission of the O-H···N bond occurs and the C(H)NCH(3) and OH groups are turned by 180° around the C-C and C-O bonds, respectively. In SMAC a competitive photoreaction channel yields the trans-keto tautomer. The identification of the two SMAC photoproducts evidences that in the excited enol form of this compound two processes compete with each other: the rotational isomerization and intramolecular proton transfer (ESIPT). In the argon matrices doped with SMA and H(2)O the SMA-water complexes were identified and characterized spectroscopically. Interaction of SMA with one or two water molecules does not affect the photochemistry of SMA.  相似文献   

5.
Bodipy derivatives containing excited state intramolecular proton transfer (ESIPT) chromophores 2-(2-hydroxyphenyl) benzothiazole and benzoxazole (HBT and HBO) subunits were prepared (7-10). The compounds show red-shifted UV-vis absorption (530-580 nm; ε up to 50000 M(-1) cm(-1)) and emission compared to both HBT/HBO and Bodipy. The new chromophores show small Stokes shift (45 nm) and high fluorescence quantum yields (Φ(F) up to 36%), which are in stark contrast to HBT and HBO (Stokes shift up to 180 nm and Φ(F) as low as 0.6%). On the basis of steady state and time-resolved absorption spectroscopy, as well as DFT/TDDFT calculations, we propose that 7-9 do not undergo ESIPT upon photoexcitation. Interestingly, nanosecond time-resolved transient absorption spectroscopy demonstrated that Bodipy-localized triplet excited states were populated for 7-10 upon photoexcitation; the lifetimes of the triplet excited states (τ(T)) are up to 195 μs. DFT calculations confirm the transient absorptions are due to the triplet state. Different from the previous report, we demonstrated that population of the triplet excited states is not the result of ESIPT. The compounds were used as organic triplet photosensitizers for photooxidation of 1,5-dihydroxylnaphthalene. One of the compounds is more efficient than the conventional [Ir(ppy)(2)(phen)][PF(6)] triplet photosensitizer. Our result will be useful for design of new Bodipy derivatives, ESIPT compounds, and organic triplet photosensitizers, as well as for applications of these compounds in photovoltaics, photocatalysis and luminescent materials, etc.  相似文献   

6.
2-(2-Hydroxyfluorophenyl)benzoxazole having an imidazole moiety 1 was synthesized by the two step reactions starting from 2-(pentafluorophenyl)benzoxazole. Protonation at the 3-imidazole nitrogen atom of 1 enhances the green emission around 500 nm, where the positive character caused by the protonation is inductively communicated to the hydroxy group, to recover its intramolecular hydrogen bonding, leading to the ESIPT process. Addition of Al3+ or Zn2+ to 1 enhances both the green emission and the blue emission around 450 nm in chloroform-acetonitrile.  相似文献   

7.
The complete (14)N nuclear quadrupole resonance (NQR) spectra have been measured in the two polymorphic crystalline phases of the molecular complex isonicotinamide-oxalic acid (2:1) by nuclear quadrupole double resonance. The observed NQR frequencies, quadrupole coupling constants, and asymmetry parameters (η) have been assigned to the two nitrogen positions (ring and amide) in a molecule on the basis of the intensity and multiplicity of the double resonance signals. The NQR data for the ring nitrogen in both polymorphic phases deviate from the correlation relations observed in substituted pyridines. This deviation is analyzed in a model, where it is assumed that an additional electric charge on the nitrogen atom changes the NQR parameters. The model suggests that this additional electric charge is negative so that the N···H-O hydrogen bond seem to be partially ionic, of the type N(-)···H-O.  相似文献   

8.
Bioactive imidazole derivatives were synthesized and characterized by NMR spectra, mass and CHN analysis. An excited state intramolecular proton transfer (ESIPT) process in hydroxy imidazole has been studied using emission spectroscopy. In hydrocarbon solvent, the tautomer emission predominates over the normal emission and in alcoholic solvent like ethanol; a dramatic enhancement of normal emission is observed which was due to increased solvation. DFT calculation on energy, charge distribution of the rotamers in the ground and excited states of the imidazole derivative were performed and discussed. PES calculation indicates that the energy barrier for the interconversion of two rotamers is too high in the excited state than in the ground state. The interaction between bioactive imidazole derivative and bovine serum albumin (BSA) was investigated.  相似文献   

9.
The aggregates of 2-(2'-hydroxyphenyl)benzoxazole (HBO), a typical molecule exhibiting excited-state intramolecular proton transfer (ESIPT), were prepared and the photophysical properties of the aqueous dispersion of aggregates were investigated. It is found that the aggregates and the solvated enols coexist in the aqueous dispersion system. Furthermore, the aggregates undergo ESIPT to give rise to keto for green emission, while the solvated enols give rise to blue emission. The temperature effects on the aqueous dispersion of the HBO aggregates system were also explored. It shows a fluorescent ratiometric change in a range of temperature from 15 to 60 degrees C. A mechanism of a temperature-dependent equilibrium between the aggregates and the solvated enols is proposed for the fluorescence change. The reversibility and robustness as well as the stability of the aqueous dispersion of aggregates show very good performances, which may be useful in the applications of molecular fluorescent temperature sensors or molecular thermometers.  相似文献   

10.
Development of fluorescent chemical sensors for fluoride is important due to increased use of fluoride in environment. A fused bis[2-(2′-hydroxyphenyl)benzoxazole] 5, which is capable of giving ESIPT emission, is found to be a useful fluorescent sensor for fluoride detection. Upon binding to fluoride, bis(HBO) 5 shows a large spectral shift in both fluorescence (from ~490 nm to ~440 nm) and absorption (from 353 nm to 392 nm). In comparison with the isomeric 4, bis(HBO) 5 dramatically improves the sensitivity in fluoride binding (by an order of magnitude), revealing a large impact of regiochemistry on the sensor performance. 1H NMR has been used to study the fluoride binding, and to correlate the intramolecular hydrogen bonding with the fluoride response. Sensitivity of 5 towards fluoride is as low as 10?5 M. Bis(HBO) 5 also showed excellent selectivity towards fluoride while being silent to other anions (Cl?, Br?, HS? and PO43?), thus making 5 a potentially useful probe.  相似文献   

11.
Herein, two compounds, 4-2′-hydroxybenzylidenehydrazinyl-N-butyl-1,8-naphthalimide(BN-1) and 4-benzylidenehydra-zinyl-N-butyl-1,8-naphthalimide(BN-2), were synthesized to explore the hydrogen bonding effect on mechanoresponsive luminescent(MRL). The results showed that compound BN-1 exhibited strong emission in solution and solid-state compared with compound BN-2. After grinding, the emission intensity of compound BN-1 sharply decreased by as much as 15 times with an obvious red-shift from 552 nm to 577 nm. The control compound BN-2, by contrast, did not change so much before and after grinding. Single crystal analysis suggests that BN-1 molecule formed strong intramolecular interaction via ―N=N···H―O hydrogen bond with a distance of 0.2632 nm. An excited-state intramolecular proton transfer(ESIPT) based fluorophore featured this intramolecular hydrogen bond. The intramolecular hydrogen bond as well as other intermolecular interactions can rigidify the molecular conformation of compound BN-1 in solid-state, and thus suppress the nonradiative pathways, resulting in strong emission. These intra- and intermolecular interactions were destroyed by mechanical stimuli, accompanied by molecular conformation change that decreases the luminescence and blocks the ESIPT process. The MRL process was also demonstrated by scanning electron microscopy and powder X-ray diffraction. The molecular stacking mode changed from crystalline to a disordered amorphous state after grinding.  相似文献   

12.
The temperature dependence of the (14)N NQR frequencies has been measured in antiferroelectric and paraelectric 55DMBP-H(2)ca and 1,5-NPD-H(2)ca. In both compounds we observe two non-equivalent nitrogen positions (N(+)-H···O(-) and N···H-O) in the antiferroelectric phase. The two nitrogen positions become equivalent (N···H···O) in the paraelectric phase. The critical exponent of the local antiferroelectric order parameter has been determined from the NQR data. The principal values of the quadrupole coupling tensor correlate in both compounds. The correlation diagrams clearly show how a proton migrates from the antiferroelectric position towards the paraelectric position in the bifurcated hydrogen bond on increasing the temperature. A slow motion has been observed in 55DMBP-H(2)ca by the (1)H and (14)N spin-lattice relaxation. An analysis of the spin-lattice relaxation data suggests a slow exchange between two non-planar conformations of the bipyridine molecule.  相似文献   

13.
Azo linked dye derivatives were synthesized and characterized by NMR, mass and elemental analysis. An excited state intramolecular proton transfer (ESIPT) in hydroxy Schiff base has been analyzed, and found that two distinct ground state isomers of I and II are responsible for the observed dual emission. DFT calculation on energy, dipole moment, charge distribution of the rotamers in the ground and excited states support the ESIPT process. PES calculation indicates that the energy barrier for the interconversion of two rotamers is too high in the excited state than the ground state. By varying the addition of base concentration to hydroxy Schiff base, two isobestic points were found which confirm the equilibrium among the trans enol form, anion and the cis enol form. Fluorescence quenching with metal ions reveal that hydroxy Schiff base can be used as a new fluorescence sensor to detect the Cu(2+) ion.  相似文献   

14.
Selectively (2)H- and (13)C-labeled spermines (SPM) were efficiently synthesized and analyzed by NMR spectroscopy to determine the spin-spin coupling constants for six conformationally relevant bonds. SPM that is composed of three alkyl moieties, a butanylene, and two propanylene chains undergoes a conformational change when interacting with multivalent anions (e.g., adenosine triphosphate (ATP), ATP-Mg(2+) , and tripolyphosphate). Upon interaction with ATP, the C-C bonds, which affect the distance between the neighboring pairs of ammonium groups (i.e., N1/N5 and N5/N5'), increase the population of gauche rotamers by 17-20% relative to those in the 4 HCl salt of SPM. However, the trend in increments of the gauche conformers for the SPM-ATP complex profoundly differs from that of the spermidine (SPD)-ATP complex. This implies that SPM may preferentially recognize the adenyl group of ATP rather than the tripolyphosphate moiety. This may account for the higher affinity of SPM to ATP-Mg(2+) than with that of SPD, which chiefly interacts with β- and γ-phosphates and is easily replaced by Mg(2+) . These results may provide a clue for the further understanding of the structural basis of polyamine biological functions.  相似文献   

15.
A synthetic and structural (X-ray) investigation into the bonding modes of benzoxazole (box) and 2-methylbenzoxazole (Mebox) ligands with halide precursors of Zn and Pd has been undertaken to clarify earlier discrepancies concerning the nature of the bonding mode(s) of the two azoles. In four structurally characterised examples, all contain the title ligands in a κ(1)N bonding motif. Calculations at the density functional level (DFT) of theory (B3LYP) confirm the ground state stability of this class of coordination for several hypothetical Pd and Zn (gas phase) compounds. The attempt to obtain suitable crystalline material of PdCl(2)(box)(2) (i.e., 5) leads to substantial complex degradation. One minor product of this process has been identified (X-ray) as the diarylformamidinato complex C(26)H(22)N(4)O(4)Pd, presumably formed via a complex combination of the decomposition products of both free box and 5.  相似文献   

16.
[Pt(2,2'-bpy)(1-MeC-N3)(2)](NO(3))(2) (1) (2,2'-bpy = 2,2'-bipyridine; 1-MeC = 1-methylcytosine) exists in water in an equilibrium of head-tail and head-head rotamers, with the former exceeding the latter by a factor of ca. 20 at room temperature. Nevertheless, 1 reacts with (en)Pd(II) (en = ethylenediamine) to give preferentially the dinuclear complex [Pt(2,2'-bpy)(1-MeC(-)-N3,N4)(2)Pd(en)](NO(3))(2)·5H(2)O (2) with head-head arranged 1-methylctosinato (1-MeC(-)) ligands and Pd being coordinated to two exocyclic N4H(-) positions. Addition of AgNO(3) to a solution of 2 leads to formation of a pentanuclear chain compound [{Pt(2,2'-bpy)(1-MeC(-))(2)Pd(en)}(2)Ag](NO(3))(5)·14H(2)O (5) in which Ag(+) cross-links two cations of 2 via the four available O2 sites of the 1-MeC(-) ligands. 2 and 5 appear to be the first X-ray structurally characterized examples of di- and multinuclear complexes derived from a Pt(II) species with two cis-positioned cytosinato ligands adopting a head-head arrangement. (tmeda)Pd(II) (tmeda = N,N,N',N'-tetramethylethylenediamine) and (2,2'-bpy)Pd(II) behave differently toward 1 in that in their derivatives the head-tail orientation of the 1-MeC(-) nucleobases is retained. In [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(2,2'-bpy)}(2)](NO(3))(4)·10H(2)O (4), both (2,2'-bpy)Pd(II) entities are pairwise bonded to N4H(-) and O2 sites of the two 1-MeC(-) rings, whereas in [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(tmeda)}(2)(NO(3))](NO(3))(3)·5H(2)O (3) only one of the two (tmeda)Pd(II) units is chelated to N4H(-) and O2. The second (tmeda)Pd(II) is monofunctionally attached to a single N4H(-) site. On the basis of these established binding patterns, ways to the formation of mixed Pt/Pd complexes and possible intermediates are proposed. The methylene protons of the en ligand in 2 are special in that they display two multiplets separated by 0.64 ppm in the (1)H NMR spectrum.  相似文献   

17.
Organic chemosensors with excited-state intramolecular proton transfer (ESIPT) behavior have attracted much attention because it has great potential in a wide range of applications. Considering the paramount behavior of excited-state relaxation, in this work, we mainly focus on deciphering photo-induced hydrogen bonding effects and ESIPT mechanism for the novel 2-(benzo[d]thiazol-2-yl)-4-(9H-carbazol-9-yl)phenol (mCzOH) dye. Considering the effects of different solvents on excited-state dynamics of mCzOH flurophore, we adopt four solvents with different polarities. Analyses of fundamental structural changes, infrared (IR) vibrational spectra, and core valence partition index between S0 and S1 state, we confirm hydrogen bond O H···N of mCzOH should be enhanced via photoexcitation. Especially, the increase of solvent polarity could promote hydrogen bonding strengthening degree. Intramolecular charge transfer (ICT) resulting from photoexcitation qualitatively facilitates the ESIPT occurrence to a large extent. For further checking and probing into ESIPT mechanism, via constructing potential energy curves (PECs) in four solvents, we clarify the ESIPT behavior for mCzOH. Most worthy of mention is that polar solvent plays critical roles in lowering potential barrier of ESIPT reaction and in facilitating ESIPT process. We not only clarify the detailed excited-state process, but also present the solvent-polarity-dependent ESIPT mechanism for mCzOH fluorophore.  相似文献   

18.
1H, (13)C, and (15)N NMR spectral data show that in chloroform solution (1Z,3Z)-1,4-di(pyridin-2-yl)buta-1,3-diene-2,3-diol, OO, is in ca. 9:1 equilibrium with (3Z)-3-hydroxy-1,4-di(pyridin-2-yl)but-3-en-2-one, OK, while no 1,4-di(pyridin-2-yl)-2,3-butanedione, KK, was detected. The species present in the tautomeric mixture were identified by comparing their experimental chemical shifts with those known for similar compounds as well as with the theoretically calculated (GIAO-HF/DFT) values. Ab initio calculations show that OK and especially the highly conjugated OO forms are preferred in the tautomeric mixtures both in vacuo and in chloroform solution. Comparison of experimental (Arrhenius) and calculated (ab initio) energies of OK shows that the MP2/6-31G//RHF/6-31G method gives the most precise results. There are one and two strong O-H.N hydrogen bonds present in the molecules of the former and latter compound, respectively. Other tautomeric forms, e.g., dienaminedione [(1Z,4Z)-1,4-di[pyridin-2(1H)-ylidene]butane-2,3-dione], and their rotamers were found to have higher energies. The single-crystal X-ray diffraction studies show that dienediol OO is the only tautomeric form present in the crystal at 173 K. Its almost perfectly planar molecule is stabilized by two strong intramolecular O-H.N hydrogen bonds.  相似文献   

19.
Four new 9-(2'-hydroxyphenyl)anthracene derivatives 7-10 were synthesized and their potential excited state intramolecular proton transfer (ESIPT) reaction investigated. Whereas 7 reacted via the anticipated (formal) ESIPT reaction (proton transfer to the 10-position of the anthracene), derivatives 8-10 reacted via ESIPT to both 9- and 10-positions, giving rise to two types of intermediates, quinone methides (e.g., 29) and zwitterions (e.g., 30). These intermediates are trapped by solvent (water or methanol) giving addition products that can readily revert back to starting material. However, on extended photolysis, the products that are isolated can best be rationalized as being due to competing elimination and intramolecular cyclization of zwitterions 30 and 37. These results show that it is possible to structurally tune ESIPT in (hydroxyphenyl)anthracenes to either result in a completely reversible reaction or give isolable anthracene addition or rearrangement products.  相似文献   

20.
Density functional theory (DFT) and time dependent density functional theory (TD-DFT) calculations of two excited state intramolecular proton transfer (ESIPT) molecules [2,5-bis(2-benzothiazolyl)hydroquinone and 2,5-bis(benzo[d]thiazol-2-yl)-4-methoxyphenol] were performed to study their structural and photo-physical behavior upon excitation. The most stable structure was established by optimizing all possible rotamers. The vertical excitation and emission wavelengths obtained by using TD-DFT show very good correlation with the experimental values. A correlation has been established based on the absorption values to determine the contribution of stable rotamers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号