首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent single-unit studies in anesthetized cats have revealed that the latency and strength of transient responses to tone burst stimuli are determined largely by stimulus events in the first few ms of the signal. The present study sought to extend these findings by studying the inferior colliculus potential (ICP) in unanesthetized chinchillas. The ICP magnitude and latency were studied as a function of the plateau amplitude and rise time of noise burst stimuli. ICP amplitude increased with stimulus amplitude and decreased with stimulus rise time. ICP latency decreased with stimulus amplitude and increased with stimulus rise time. The absolute values of the ICP latencies confirmed that it is only the first few ms of the stimulus which determine the timing of response initiation, and therefore, that it is not the plateau level of the stimulus that directly determines the latent period. These data constitute a direct link between earlier single-unit studies in anesthetized animals and brainstem-evoked potential data in animals and man.  相似文献   

2.
The latencies of wave V in Brain Stem Evoked Responses (BSER) elicited by a set of acoustic transients were measured. The stimuli were produced by delivering pulses to two filters, arranged in series. The filters were set so that the maximum acoustic energy in the transients, i.e., filtered clicks, occurred at 0.5, 1, 2, 4, or 8 kHz. The filtered clicks were presented via earphones at a rate of 30/s at 20, 40, or 60 dB HL to ten subjects with normal hearing. The latencies of wave V varied systematically with center frequency of the filtered clicks when they were each at the same HL. Stimuli presented at 40 dB HL produced the greatest opportunity for relating stimulus frequency to latency. The latencies for a smaller set of responses to stimuli presented at 10/s were the same as those for the principal data taken at 30/s. The changes in latency of wave V due to frequency are similar to those observed by other investigators in whole-nerve responses recorded in man.  相似文献   

3.
Previous studies have shown that voice fundamental frequency (F0) is modified by changes in the pitch of vocal feedback and have demonstrated that the audio-vocal control system has both open- and closed-loop control properties. However, the extent to which this system operates in closed-loop fashion may have been underestimated in previous work. Because the step-type stimuli used were very rapid, and people are physically unable to change their voice F0 as rapidly as the stimuli, feedback responses might have been reduced or suppressed. In the present study, pitch-shift stimuli, consisting of a disparity between voice F0 and feedback pitch of varying ramp onset velocities, were presented to subjects vocalizing a steady /ah/ sound to examine the effect of stimulus onset on voice F0 responses. Results showed that response velocity covaried with stimulus velocity. Response latency and time of the peak response decreased with increases in stimulus velocity, while response magnitude decreased. A simple feedback model reproduced most features of these responses. These results strongly support previous suggestions that the audio-vocal system monitors auditory feedback and, through closed-loop negative feedback, adjusts voice F0 so as to cancel low-level fluctuations in F0.  相似文献   

4.
The precision of spike response timing of 94 primary auditory cortex neurons was studied using conventional extracellular recording techniques in barbiturate-anesthetized cats to which tone- and/or noise-burst stimuli were presented using sealed sound delivery systems. Precision of spike timing was indexed using the standard deviation of the first-spike latent period in responses evoked by repeated presentation of tonal stimuli systematically varied in frequency, amplitude, and/or repetition rate. Within a neuron, variability of first-spike timing was usually proportional to the mean first-spike latency, in agreement with previous reports. In cases where there was a systematic relation between the precision of response timing and the mean latency, a linear correlation accounted for up to 90% of the data variance. Across the 94 neurons, standard deviations seen in responses of minimum latency were related to minimal mean latencies, and were typically in the range from 0.15-1.5 ms. The data suggest that responses to transients in the cortex show a precision of spike timing which is only slightly worse than that seen in cochlear-nerve fibers. This, however, is in dramatic contrast to previous evidence on the steady-state temporal response of cortical cells, which is at least an order of magnitude poorer than that seen in auditory-nerve fibers and many cochlear nucleus cells. These observations may be directly relevant to the known consequences of auditory cortex pathology in man.  相似文献   

5.
This study investigated the frequency specificity of the auditory brainstem and middle latency responses to 80 and 90 dB ppe SPL 500-Hz and 90 dB ppe SPL 2000-Hz tonebursts. The stimuli were brief (2-1-2 cycle) linear-gated tonebursts. ABR/MLRs were recorded using two electrode montages: (1) Cz-nape of neck and (2) Cz-ipsilateral earlobe. Cochlear contributions to ABR wave V-Na and MLR waves Na-Pa and Pa-Nb were assessed by plotting notched noise tuning curves which showed amplitudes and latencies as a function of center frequency of the noise masker [Abdala and Folsom, J. Acoust. Soc. Am. 97, 2394 (1995); ibid. 98, 921 (1995)]. Maxima in the response amplitude profiles for the ABR and MLR to 80 dB ppe SPL tonebursts occurred within one-half octave of the nominal stimulus frequency, with minimal contributions to the responses from frequencies greater than one octave away. At 90 dB ppe SPL, contributions came from a slightly broader frequency region for both stimulus frequencies. Thus, the ABR/MLR to 80 dB ppe SPL tonebursts shows good frequency specificity which decreases at 90 dB ppe SPL. No significant differences exist in frequency specificity of: (1) ABR wave V-Na versus MLR waves Na-Pa and Pa-Nb at either stimulus frequency or intensity; and (2) ABR/MLRs recorded using the two electrode montages.  相似文献   

6.
Brain stem and forebrain auditory-evoked potentials were studied parametrically during the first 90 postnatal days in unanesthetized kittens using tonal and click stimuli. This paper describes changes that occur in transmission time through the auditory pathway during development by analyses of the maturational time courses of latencies associated with waves of both auditory brain stem responses (ABR's) and late-occurring auditory-evoked potentials (AER's), recorded subdermally from the vertex. In response to click stimuli, ABR latencies were found to decay rapidly early in postnatal life and more slowly after the third postnatal week. Those trends were modeled as a two-stage sequential process, with a linear stage occurring between 7 and 18 postnatal days followed by an exponential stage during which adult latencies were achieved. AER latencies changes during development were less complicated, and followed a single-stage exponential time course. When threshold influences were taken into account--that is, when data were adjusted so that sensation level (SL) was constant across age--the latency-maturation curves associated with all ABR waves were adequately described by a single exponential, and latencies recorded from young animals were substantially shorter than latencies associated with the same aged animals when analyses were carried out with constant sound-pressure level (SPL) stimuli across age. In addition, the difference function, generated when isoasymptotic SPL and SL latency versus age functions were subtracted from one another, was also represented by an exponential curve, suggesting that at least two processes underlie the latency decay that occurs during postnatal development. Evoked responses to tonal stimuli throughout development were consistent with the basoapical developmental gradient that is observed anatomically.  相似文献   

7.
The cortical mechanisms of perceptual segregation of concurrent sound sources were examined, based on binaural detection of interaural timing differences. Auditory event-related potentials were measured from 11 healthy subjects. Binaural stimuli were created by introducing a dichotic delay of 500-ms duration to a narrow frequency region within a broadband noise, and resulted in a perception of a centrally located noise and a right-lateralized pitch (dichotic pitch). In separate listening conditions, subjects actively discriminated and responded to randomly interleaved binaural and control stimuli, or ignored random stimuli while watching silent cartoons. In a third listening condition subjects ignored stimuli presented in homogenous blocks. For all listening conditions, the dichotic pitch stimulus elicited an object-related negativity (ORN) at a latency of about 150-250 ms after stimulus onset. When subjects were required to actively respond to stimuli, the ORN was followed by a P400 wave with a latency of about 320-420 ms. These results support and extend a two-stage model of auditory scene analysis in which acoustic streams are automatically parsed into component sound sources based on source-relevant cues, followed by a controlled process involving identification and generation of a behavioral response.  相似文献   

8.
The purpose of the present study was to investigate the responsiveness of the pitch-shift reflex to small magnitude stimuli and voice fundamental frequency (F(0)) level. English speakers received pitch-shifted voice feedback (+/-10, 20, 30, 40, and 50 cents, 200 ms duration) during vowel phonations at a high and a low F(0) level. Mean pitch-shift response magnitude increased as a function of pitch-shift stimulus magnitude, but when expressed as a percent of stimulus magnitude, declined from 100% with +/-10 cents to 37% with +/-50 cents stimuli. Response magnitudes were larger and latencies were shorter with a high F(0) level (16 cents;130 ms) compared to a low F(0) level (13 cents;152 ms). Data from the present study demonstrate that vocal response magnitudes are equal to small perturbation magnitudes, and they are larger and faster with a high F(0) voice. These results suggest that the audio-vocal system is optimally suited for compensating for small pitch rather than larger perturbations. Data also suggest the sensitivity of the audio-vocal system to voice perturbation may vary with F(0) level.  相似文献   

9.
Age and stimulus rise time (RT) effects on response latency were investigated for inferior colliculus (IC) neurons in young-adult and old CBA mice. Single-unit responses were recorded to unmodulated and sinusoidal amplitude modulated (SAM) broadband noise carriers, presented at 35 to 80 dB SPL. Data from 63 young-adult and 76 old phasic units were analyzed to identify the time interval between stimulus onset and driven-response onset (latency). When controlling for stimulus sound level and AM frequency, significant age-related changes in latency were identified. Absolute latency decreased with age at all stimulus AM frequencies, significantly so for equivalent rise times (RT) < or = 12.5 ms. The linear correlation of latency with AM stimulus RT was significant for both young-adult and old units, and increased significantly with age. It is likely that both the decrease in absolute latency and the increase in latency/RT correlation with age are consistent with a reduction of inhibitory drive with age in the IC. These latency changes will result in age-related timing variations in brainstem responses to stimulus onsets, and therefore affect the encoding of complex sounds.  相似文献   

10.
Transient-evoked stimulus-frequency otoacoustic emissions (SFOAEs), recorded using a nonlinear differential technique, and distortion-product otoacoustic emissions (DPOAEs) were measured in 17 normal-hearing and 10 hearing-impaired subjects using pairs of tone pips (pp), gated tones (gg), and for DPOAEs, continuous and gated tones (cg). Temporal envelopes of stimulus and OAE waveforms were obtained by narrow-band filtering at the stimulus or DP frequency. Mean SFOAE latencies in normal ears at 2.7 and 4.0 kHz decreased with increasing stimulus level and were larger at 4.0 kHz than latencies in impaired ears. Equivalent auditory filter bandwidths were calculated as a function of stimulus level from SFOAE latencies by assuming that cochlear transmission is minimum phase. DPOAE latencies varied less with level than SFOAE latencies. The ppDPOAEs often had two (or more) peaks separated in time with latencies consistent with model predictions for distortion and reflection components. Changes in ppDPOAE latency with level were sometimes explained by a shift in relative amplitudes of distortion and reflection components. The pp SFOAE SPL within the main spectral lobe of the pip stimulus was higher for normal ears in the higher-frequency half of the pip than the lower-frequency half, which is likely an effect of basilar membrane two-tone suppression.  相似文献   

11.

Background  

Previous electrophysiological studies have identified a "voice specific response" (VSR) peaking around 320 ms after stimulus onset, a latency markedly longer than the 70 ms needed to discriminate living from non-living sound sources and the 150 ms to 200 ms needed for the processing of voice paralinguistic qualities. In the present study, we investigated whether an early electrophysiological difference between voice and non-voice stimuli could be observed.  相似文献   

12.
A technique for the recording of large sets of room impulse responses or head-related transfer functions is presented. The technique uses a microphone moving with constant speed. Given a setup (e.g., length of the room impulse response), a careful choice of the recording parameters (excitation signal, speed of movement) leads to the reconstruction of all impulse responses along the trajectory. In the case of a moving microphone along a circle, the maximal angular speed is given as a function of the length of the impulse response, its maximal temporal frequency, the speed of sound propagation, and the radius of the circle. As a result of the presented algorithm, head-related transfer functions sampled at 44.1 kHz can be measured at all angular positions along the horizontal plane in less than 1 s. The presented theory is compared with a real system implementation using a precision moving microphone holder. The practical setup is discussed together with its limitations.  相似文献   

13.
14.
The temporal and spatial characteristics of oxygenation-sensitive MRI responses to very brief visual stimuli (five Hz reversing black and white checkerboard pattern versus darkness) were investigated (nine subjects) by means of serial single-shot gradient-echo echo-planar imaging (2.0 T, TR = 400 ms, mean TE = 54 ms, flip angle 30°). The use of a 0.2-s stimulus and a 90-s control phase resulted in an initial latency phase (about 2 s, no signal change), a positive MRI response (2.5% signal increase peaking at 5 s after stimulus onset), and a post-stimulus undershoot (1% signal decrease peaking at 15 s after stimulus onset) lasting for about 50–60 s. The finding that a subsecond visual stimulus elicits both a strong positive MRI response and a long-lasting undershoot provides further evidence for the neuronal origin of slow signal fluctuations seen in the absence of functional challenge and their utility for mapping functional connectivity. The additional observation that a reduction of the inter-stimulus control phase from 90 s to 9.8 s does not seem to affect the spatial extent of cortical activation in pertinent maps is of major relevance for the design and analysis of “event-related” MRI studies.  相似文献   

15.
The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4-5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.  相似文献   

16.
The frequency specificity of the auditory brainstem response (ABR) was examined by means of pure-tone masking profiles using click, 4000-Hz, and 1000-Hz filtered-click stimuli. Simultaneous pure-tone maskers were presented at one-half octave intervals around stimulus center frequency. Masking profiles at two intensities (60 and 40 dB SL) were obtained by measuring both latency and amplitude shifts in wave V as a result of the discrete-frequency maskers. Both latency and amplitude analyses showed masking profiles at 40 dB SL that were narrow and centered around stimulus frequency, whereas profiles at 60 dB SL showed high-frequency spread of the cochlear excitation area.  相似文献   

17.
Recently, we have demonstrated that the fine-digit topography (millimeter sized) previously identified in the primary somatosensory cortex (SI), using electrophysiology and intrinsic signal optical imaging, can also be mapped with submillimeter resolution using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging at high field. In the present study, we have examined the dependence of BOLD signal response on stimulus intensity in two subregions of SI, Areas 3b and 1. In a region(s)-of-interest (ROI) analysis of Area 3b, BOLD signal amplitude increased linearly with increasing amplitude of an 8-Hz vibrotactile stimulus, and BOLD signal was sustained throughout the stimulation period. In contrast, in Area 1, a significant BOLD signal response was only observed with more intense stimuli, and ROI analysis of the dependence of BOLD response showed no significant dependence on stimulus intensity. In addition, activation was not sustained throughout the period of stimulation. Differing responses of Areas 3b and 1 suggest potentially divergent roles for subregions of SI cortices in vibrotactile intensity encoding. Moreover, this study underscores the importance of imaging at small spatial scales. In this case, such high-resolution imaging allows differentiation between area-specific roles in intensity encoding and identifies anatomic targets for detailed electrophysiological studies of somatosensory neuronal populations with different coding properties. These experiments illustrate the value of nonhuman primates for characterizing the dependence of the BOLD signal response on stimulus parameters and on underlying neural response properties.  相似文献   

18.
Stimulus frequency otoacoustic emission (SFOAE) sound pressure level (SPL) and latency were measured at probe frequencies from 500 to 4000 Hz and probe levels from 40 to 70 dB SPL in 16 normal-hearing adult ears. The main goal was to use SFOAE latency estimates to better understand possible source mechanisms such as linear coherent reflection, nonlinear distortion, and reverse transmission via the cochlear fluid, and how those sources might change as a function of stimulus level. Another goal was to use SFOAE latencies to noninvasively estimate cochlear tuning. SFOAEs were dominated by the reflection source at low stimulus levels, consistent with previous research, but neither nonlinear distortion nor fluid compression become the dominant source even at the highest stimulus level. At each stimulus level, the SFOAE latency was an approximately constant number of periods from 1000 to 4000 Hz, consistent with cochlear scaling symmetry. SFOAE latency decreased with increasing stimulus level in an approximately frequency-independent manner. Tuning estimates were constant above 1000 Hz, consistent with simultaneous masking data, but in contrast to previous estimates from SFOAEs.  相似文献   

19.
This study investigates the use of chirp stimuli to compensate for the cochlear traveling wave delay. The temporal dispersion in the cochlea is given by the traveling time, which in this study is estimated from latency-frequency functions obtained from (1) a cochlear model, (2) tone-burst auditory brain stem response (ABR) latencies, (3) and narrow-band ABR latencies. These latency-frequency functions are assumed to reflect the group delay of a linear system that modifies the phase spectrum of the applied stimulus. On the basis of this assumption, three chirps are constructed and evaluated in 49 normal-hearing subjects. The auditory steady-state responses to these chirps and to a click stimulus are compared at two levels of stimulation (30 and 50 dB nHL) and a rate of 90s. The chirps give shorter detection time and higher signal-to-noise ratio than the click. The shorter detection time obtained by the chirps is equivalent to an increase in stimulus level of 20 dB or more. The results indicate that a chirp is a more efficient stimulus than a click for the recording of early auditory evoked responses in normal-hearing adults using transient sounds at a high rate of stimulation.  相似文献   

20.
A theoretical analysis is presented of the steady state response of a plate strip constrained elastically along its edges against rotation and translation under the action of a moving transverse line load. Within the classical plate theory the solutions are obtained by using Fourier and Laplace transformation methods with respect to space variables. Numerical results are given for a plate strip with both edges identically constrained and a normal line load of constant intensity travelling along the plate strip with a constant speed. The first five speeds of the applied load for which a resonance effect occurs in the system are plotted as functions of the edge constraint parameters. The profiles of the displacement and the moment of the plate are also shown graphically for several values of the load speed and the edge constraint parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号