首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

2.
For a subgroup L of the symmetric group \({S_{\ell}}\), we determine the minimal base size of \({GL_d(q) \wr L}\) acting on \({V_d(q)^{\ell}}\) as an imprimitive linear group. This is achieved by computing the number of orbits of GLd(q) on spanning m-tuples, which turns out to be the number of d-dimensional subspaces of Vm(q). We then use these results to prove that for certain families of subgroups L, the affine groups whose stabilisers are large subgroups of \({GL_{d}(q) \wr L}\) satisfy a conjecture of Pyber concerning bases.  相似文献   

3.
Using the periodic unfolding method of Cioranescu, Damlamian and Griso, we study the homogenization for equations of the form
$-{\rm div}\,\,d_\varepsilon=f,\,\,{\rm with}\,\,\left(\nabla u_{\varepsilon , \delta }(x),d_{\varepsilon , \delta }(x)\right) \in A_\varepsilon(x)$
in a perforated domain with holes of size \({\varepsilon \delta }\) periodically distributed in the domain, where \({A_\varepsilon }\) is a function whose values are maximal monotone graphs (on R N ). Two different unfolding operators are involved in such a geometric situation. Under appropriate growth and coercivity assumptions, if the corresponding two sequences of unfolded maximal monotone graphs converge in the graph sense to the maximal monotone graphs A(x, y) and A 0(x, z) for almost every \({(x,y,z)\in \Omega \times Y \times {\rm {\bf R}}^N}\), as \({\varepsilon \to 0}\), then every cluster point (u 0, d 0) of the sequence \({(u_{\varepsilon , \delta }, d_{\varepsilon , \delta } )}\) for the weak topology in the naturally associated Sobolev space is a solution of the homogenized problem which is expressed in terms of u 0 alone. This result applies to the case where \({A_{\varepsilon}(x)}\) is of the form \({B(x/\varepsilon)}\) where B(y) is periodic and continuous at y = 0, and, in particular, to the oscillating p-Laplacian.
  相似文献   

4.
We study the nonexistence of weak solutions of higher-order elliptic and parabolic inequalities of the following types: \(\sum {_{i = 1}^N\sum\nolimits_{{e_i} \leqslant {\alpha _i} \leqslant {m_i}} {D_{{x_i}}^{{\alpha _i}}\left( {{A_{{\alpha _i}}}\left( {x,u} \right)} \right)} \geqslant f\left( {x,u} \right),} x \in {\mathbb{R}^N}\), and \({u_t} + \sum {_{i = 1}^N\sum\nolimits_{{k_i} \leqslant {\beta _i} \leqslant {n_i}} {D_{{x_i}}^{{\beta _i}}\left( {{B_{{\beta _i}}}\left( {x,t,u} \right)} \right)} > g\left( {x,t,u} \right),\left( {x,t} \right)} \in {\mathbb{R}^N} \times {\mathbb{R}_ + }\), where l i , m i , k i , n i ∈ N satisfy the condition l i , k i > 1 for all i = 1,..., N, and A αi (x, u), B βi (x, t, u), f(x, u), and g(x, t, u) are some given Carathéodory functions. Under appropriate conditions on the functions A αi , B βi , f, and g, we prove theorems on the nonexistence of solutions of these inequalities.  相似文献   

5.
Let S be the set of square-free natural numbers. A Hilbert-Schmidt operator, A, associated to the Möbius function has the property that it maps from \({ \cup _{0 < r < \infty }}{l^r}(s)\) to \({ \cap _{0 < r < \infty }}{l^r}(s)\), injectively. If 0 < r< 2 and ξlr (S), the series \({f_\zeta } = \sum\nolimits_{n \in s} {A\zeta (x)cos2\pi nx} \) converges uniformly to an element of fξR0, i.e., a periodic, even, continuous function with equally spaced Riemann sums, \(\sum\nolimits_{j = 0}^{N - 1} {{f_\zeta }} (j/N) = 0,N = 1,2....\) If \({A_{\zeta \lambda }} = \lambda {\zeta _\lambda },{\zeta _\lambda }(1) = 1\), then ξλ is multiplicative. If \({f_{{\zeta _\lambda }}} \in {\Lambda _a}\), the space of α-Lipschitz continous functions, for some α > 0, and if χ is any Dirichlet character, then L(s, χ) ≠ 0, Res > 1 ? α. Conjecturally, the Generalized Riemann Hypothesis (GRH) is equivalent to fξ ∈ Λα, α < 1/2, ξlr (S), 0 < r < 2. Using a 1991 estimate by R. C. Baker and G. Harman, one finds GRH implies fξ ∈ Λα, α < 1/4, ξlr (S), 0 < r < 2. The question of whether R0 ∩ Λα ≠ {0} for some positive α > 0 is open.  相似文献   

6.
In this paper, we establish the preserving log-convexity of linear transformation associated with p, q-analogue of Pascal triangle, i.e., if the sequence of nonnegative numbers {xn}n is logconvex, then \({y_n} = {\sum\nolimits_{k = 0}^n {\left[ {\frac{n}{k}} \right]} _{pq}}{x_k}\) so is it for qp ≥ 1.  相似文献   

7.
In this paper, we study the initial-boundary value problem of porous medium equation ρ(x)u t  = Δu m  + V(x)h(t)u p in a cone D = (0, ∞) × Ω, where \({V(x)\,{\sim}\, |x|^\sigma, h(t)\,{\sim}\, t^s}\). Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let l denote the positive root of l 2 + (n ? 2)l = ω 1. We prove that if \({m < p \leq 1+(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}\), then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if \({p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}\), then the problem has global solutions for some u 0 ≥ 0.  相似文献   

8.
Let CC d,k be the largest possible number of vertices in a cyclic Cayley graph of degree d and diameter k, and let AC d,k be the largest order in an Abelian Cayley graph for given d and k. We show that \({CC_{d,2} \geq \frac{13}{36} (d + 2)(d -4)}\) for any d= 6p?2 where p is a prime such that \({p \neq 13}\) , \({p \not\equiv 1}\) (mod 13), and \({AC_{d,3} \geq \frac{9}{128} (d + 3)^2(d - 5)}\) for d = 8q?3 where q is a prime power.  相似文献   

9.
We survey the matrix product solutions of the Yang–Baxter equation recently obtained from the tetrahedron equation. They form a family of quantum R-matrices of generalized quantum groups interpolating the symmetric tensor representations of Uq(An?1(1)) and the antisymmetric tensor representations of \({U_{ - {q^{ - 1}}}}\left( {A_{n - 1}^{\left( 1 \right)}} \right)\). We show that at q = 0, they all reduce to the Yang–Baxter maps called combinatorial R-matrices and describe the latter by an explicit algorithm.  相似文献   

10.
A self-adjoint differential operator \(\mathbb{L}\) of order 2m is considered in L 2[0,∞) with the classic boundary conditions \(y^{(k_1 )} (0) = y^{(k_2 )} (0) = y^{(k_3 )} (0) = \ldots = y^{(k_m )} (0) = 0\), where 0 ≤ k 1 < k 2 < ... < k m ≤ 2m ? 1 and {k s } s=1 m ∪ {2m ? 1 ? k s } s=1 m = {0, 1, 2, ..., 2m ? 1}. The operator \(\mathbb{L}\) is perturbed by the operator of multiplication by a real measurable bounded function q(x) with a compact support: \(\mathbb{P}\) f(x) = q(x)f(x), fL 2[0,). The regularized trace of the operator \(\mathbb{L} + \mathbb{P}\) is calculated.  相似文献   

11.
Let ASG(2ν + l, ν;F q ) be the (2ν + l)-dimensional affine-singular symplectic space over the finite field F q and ASp2ν+l,ν (F q ) be the affine-singular symplectic group of degree 2ν + l over F q . Let O be any orbit of flats under ASp2ν+l,ν (F q ). Denote by L J the set of all flats which are joins of flats in O such that O ? L J and assume the join of the empty set of flats in ASG(2ν + l, ν;F q ) is ?. Ordering L J by ordinary or reverse inclusion, then two lattices are obtained. This paper firstly studies the inclusion relations between different lattices, then determines a characterization of flats contained in a given lattice L J , when the lattices form geometric lattice, lastly gives the characteristic polynomial of L J .  相似文献   

12.
We find the general form of solutions of the integral equation ∫k(t ? s)u1(s) ds = u2(t) of the convolution type for the pair of unknown functions u1 and u2 in the class of compactly supported continuously differentiable functions under the condition that the kernel k(t) has the Fourier transform \(\widetilde {{P_2}}\), where \(\widetilde {{P_1}}\) and \(\widetilde {{P_2}}\) are polynomials in the exponential eiτx, τ > 0, with coefficients polynomial in x. If the functions \({P_l}\left( x \right) = \widetilde {{P_l}}\left( {{e^{i\tau x}}} \right)\), l = 1, 2, have no common zeros, then the general solution in Fourier transforms has the form Ul(x) = Pl(x)R(x), l = 1, 2, where R(x) is the Fourier transform of an arbitrary compactly supported continuously differentiable function r(t).  相似文献   

13.
Je?manowicz [9] conjectured that, for positive integers m and n with m > n, gcd(m,n) = 1 and \({m\not\equiv n\pmod{2}}\), the exponential Diophantine equation \({(m^2-n^2)^x+(2mn)^y=(m^2+n^2)^z}\) has only the positive integer solution (x, y, z) = (2, 2, 2). We prove the conjecture for \({2 \| mn}\) and m + n has a prime factor p with \({p\not\equiv1\pmod{16}}\).  相似文献   

14.
Let H, A and B be subgroups of a group G. We call the pair (A, B) a θ-pair for H in G if: (i) \({\langle H, A\rangle=G}\) and B = (AH) G ; (ii) if A 1/B is a proper subgroup of A/B and \({{A_1/B \vartriangleleft G/B}}\), then \({G\neq \langle H, A_1\rangle}\). In this paper, we study the θ-pairs for 2-maximal subgroups of a group, which imply a group to be solvable or supersolvable.  相似文献   

15.
Barker and Larman asked the following. Let \({K' \subset {\mathbb{R}}^d}\) be a convex body, whose interior contains a given convex body \({K \subset {\mathbb{R}}^d}\), and let, for all supporting hyperplanes H of K, the (d ? 1)-volumes of the intersections \({K' \cap H}\) be given. Is K′ then uniquely determined? Yaskin and Zhang asked the analogous Question when, for all supporting hyperplanes H of K, the d-volumes of the “caps” cut off from K′ by H are given. We give local positive answers to both of these questions, for small C2-perturbations of K, provided the boundary of K is C+2. In both cases, (d ? 1)-volumes or d-volumes can be replaced by k-dimensional quermassintegrals for \({1 \le k \le d-1}\) or for \({1 \le k \le d}\), respectively. Moreover, in the first case we can admit, rather than hyperplane sections, sections by l-dimensional affine planes, where \({1 \le k \le l \le d-1}\). In fact, here not all l-dimensional affine subspaces are needed, but only a small subset of them (actually, a (d ? 1)-manifold), for unique local determination of K′.  相似文献   

16.
For nonnegative integers qnd, let \(A_q(n,d)\) denote the maximum cardinality of a code of length n over an alphabet [q] with q letters and with minimum distance at least d. We consider the following upper bound on \(A_q(n,d)\). For any k, let \(\mathcal{C}_k\) be the collection of codes of cardinality at most k. Then \(A_q(n,d)\) is at most the maximum value of \(\sum _{v\in [q]^n}x(\{v\})\), where x is a function \(\mathcal{C}_4\rightarrow {\mathbb {R}}_+\) such that \(x(\emptyset )=1\) and \(x(C)=\!0\) if C has minimum distance less than d, and such that the \(\mathcal{C}_2\times \mathcal{C}_2\) matrix \((x(C\cup C'))_{C,C'\in \mathcal{C}_2}\) is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in n. It yields the new upper bounds \(A_4(6,3)\le 176\), \(A_4(7,3)\le 596\), \(A_4(7,4)\le 155\), \(A_5(7,4)\le 489\), and \(A_5(7,5)\le 87\).  相似文献   

17.
We study inverse scattering problems at a fixed energy for radial Schrödinger operators on \({\mathbb{R}^n}\), \({n \geq 2}\). First, we consider the class \({\mathcal{A}}\) of potentials q(r) which can be extended analytically in \({\Re z \geq 0}\) such that \({\mid q(z)\mid \leq C \ (1+ \mid z \mid )^{-\rho}}\), \({\rho > \frac{3}{2}}\). If q and \({\tilde{q}}\) are two such potentials and if the corresponding phase shifts \({\delta_l}\) and \({\tilde{\delta}_l}\) are super-exponentially close, then \({q=\tilde{q}}\). Second, we study the class of potentials q(r) which can be split into q(r) = q 1(r) + q 2(r) such that q 1(r) has compact support and \({q_2 (r) \in \mathcal{A}}\). If q and \({\tilde{q}}\) are two such potentials, we show that for any fixed \({a>0, {\delta_l - \tilde{\delta}_l \ = \ o \left(\frac{1}{l^{n-3}}\ \left({\frac{ae}{2l}}\right)^{2l}\right)}}\) when \({l \rightarrow +\infty}\) if and only if \({q(r)=\tilde{q}(r)}\) for almost all \({r \geq a}\). The proofs are close in spirit with the celebrated Borg–Marchenko uniqueness theorem, and rely heavily on the localization of the Regge poles that could be defined as the resonances in the complexified angular momentum plane. We show that for a non-zero super-exponentially decreasing potential, the number of Regge poles is always infinite and moreover, the Regge poles are not contained in any vertical strip in the right-half plane. For potentials with compact support, we are able to give explicitly their asymptotics. At last, for potentials which can be extended analytically in \({\Re z \geq 0}\) with \({\mid q(z)\mid \leq C (1+ \mid z \mid)^{-\rho}}\), \({\rho >1}\), we show that the Regge poles are confined in a vertical strip in the complex plane.  相似文献   

18.
Say that \({\kappa}\)’s measurability is destructible if there exists a < \({\kappa}\)-closed forcing adding a new subset of \({\kappa}\) which destroys \({\kappa}\)’s measurability. For any δ, let λδ =df The least beth fixed point above δ. Suppose that \({\kappa}\) is indestructibly supercompact and there is a measurable cardinal λ > \({\kappa}\). It then follows that \({A_{1} = \{\delta < \kappa \mid \delta}\) is measurable, δ is not a limit of measurable cardinals, δ is not δ+ strongly compact, and δ’s measurability is destructible when forcing with partial orderings having rank below λδ} is unbounded in \({\kappa}\). On the other hand, under the same hypotheses, \({A_{2} = \{\delta < \kappa \mid \delta}\) is measurable, δ is not a limit of measurable cardinals, δ is not δ+ strongly compact, and δ′s measurability is indestructible when forcing with either Add(δ, 1) or Add(δ, δ+)} is unbounded in \({\kappa}\) as well. The large cardinal hypothesis on λ is necessary, as we further demonstrate by constructing via forcing two distinct models in which either \({A_{1} = \emptyset}\) or \({A_{2} = \emptyset}\). In each of these models, both of which have restricted large cardinal structures above \({\kappa}\), every measurable cardinal δ which is not a limit of measurable cardinals is δ+ strongly compact, and there is an indestructibly supercompact cardinal \({\kappa}\). In the model in which \({A_{1} = \emptyset}\), every measurable cardinal δ which is not a limit of measurable cardinals is <λδ strongly compact and has its <λδ strong compactness (and hence also its measurability) indestructible when forcing with δ-directed closed partial orderings having rank below λδ. The choice of the least beth fixed point above δ is arbitrary, and other values of λδ are also possible.  相似文献   

19.
A bounded linear operator T on a Banach space X is called an (m, p)-isometry if it satisfies the equation \({\sum_{k=0}^{m}(-1)^{k} {m \choose k}\|T^{k}x\|^{p}=0}\) , for all \({x \in X}\) . In this paper we study the structure which underlies the second parameter of (m, p)-isometric operators. We concentrate on determining when an (m, p)-isometry is a (μ, q)-isometry for some pair (μ, q). We also extend the definition of (m, p)-isometry, to include p = ∞ and study basic properties of these (m, ∞)-isometries.  相似文献   

20.
We consider quadratic functions f that satisfy the additional equation y2 f(x) =  x2 f(y) for the pairs \({ (x,y) \in \mathbb{R}^2}\) that fulfill the condition P(x, y) =  0 for some fixed polynomial P of two variables. If P(x, y) =  axbyc with \({ a , b , c \in \mathbb{R}}\) and \({(a^2 + b^2)c \neq 0}\) or P(x,y) =  x n ? y with a natural number \({n \geq 2}\), we prove that f(x) =  f(1) x2 for all \({x \in \mathbb{R}}\). Some related problems, admitting quadratic functions generated by derivations, are considered as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号