首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the present study, we consider isometric immersions ${f : M \rightarrow \tilde{M}(c)}$ of (2n + 1)-dimensional invariant submanifold M 2n+1 of (2m + 1) dimensional Sasakian space form ${\tilde{M}^{2m+1}}$ of constant ${ \varphi}$ -sectional curvature c. We have shown that if f satisfies the curvature condition ${\overset{\_}{R}(X, Y) \cdot \sigma =Q(g, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=\frac{1}{3}(2c+n(c+1)),}$ or ${||\sigma||^{2}(x) > \frac{1}{3}(2c+n(c+1)}$ at some point x of M 2n+1. We also prove that ${\overset{\_ }{R}(X, Y)\cdot \sigma = \frac{1}{2n}Q(S, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=-\frac{2}{3}(\frac{1}{2n}\tau -\frac{1}{2}(n+2)(c+3)+3)}$ , or ${||\sigma||^{2}(x) > -\frac{2}{3}(\frac{1}{2n} \tau (x)-\frac{1}{2} (n+2)(c+3)+3)}$ at some point x of M 2n+1.  相似文献   

2.
We study that the n-graph defined by a smooth map ${f:\Omega\subset\mathbb R^{n}\to \mathbb R^{m}, m\ge 2,}$ in ${\mathbb R^{m+n}}$ of the prescribed mean curvature and the Gauss image. Under the condition $$\Delta_f=\left[\text{det}\left(\delta_{ij}+\sum_\alpha{\frac {\partial {f^\alpha}}{\partial {x^i}}}{\frac {\partial {f^\alpha}}{\partial {x^j}}}\right)\right]^{\frac{1}{2}} < 2,$$ we derive the interior curvature estimates $$\sup_{D_R(x)}|B|^2\le{\frac{C}{R^2}}$$ when 2 ≤ n ≤ 5 with constant C depending on the given geometric data. If there is no dimension limitation we obtain $$\sup_{D_R(x)}|B|^2\le CR^{-a}\sup_{D_{2R}(x)}(2-\Delta_f)^{-\left({\frac{3}{2}}+{\frac{1}{s}}\right)},\quad s=\min(m, n)$$ with a < 1. If the image under the Gauss map is contained in a geodesic ball of the radius ${{\frac{\sqrt{2}}{4}}\pi}$ in G n,m we also derive corresponding estimates.  相似文献   

3.
Let φ be a primitive Maass cusp form and t φ (n) be its nth Fourier coefficient at the cusp infinity. In this short note, we are interested in the estimation of the sums ${\sum_{n \leq x}t_{\varphi}(n)}$ and ${\sum_{n \leq x}t_{\varphi}(n^2)}$ . We are able to improve the previous results by showing that for any ${\varepsilon > 0}$ $$\sum_{n \leq x}t_{\varphi}(n) \ll\, _{\varphi, \varepsilon} x^{\frac{1027}{2827} + \varepsilon} \quad {and}\quad\sum_{n \leq x}t_{\varphi}(n^2) \ll\,_{\varphi, \varepsilon} x^{\frac{489}{861} + \varepsilon}.$$   相似文献   

4.
We obtain a sharp Remez inequality for the trigonometric polynomial T n of degree n on [0,2π): $$\|T_n \|_{L_\infty([0,2\pi))} \le \biggl(1+2\tan^2 \frac{n\beta}{4m} \biggr) { \|T_n \|_{L_\infty ([0,2\pi) \setminus B )}}, $$ where $\frac{2\pi}{m}$ is the minimal period of T n and $|B|=\beta<\frac {2\pi m}{n}$ is a measurable subset of $\mathbb {T}$ . In particular, this gives the asymptotics of the sharp constant in the Remez inequality: for a fixed n, $$\mathcal{C}(n, \beta)=1+ \frac{(n\beta)^2}{8} +O \bigl(\beta^4\bigr), \quad\beta \to0, $$ where $$\mathcal{C}(n,\beta):= \sup_{|B|=\beta}\sup_{T_n} \frac{ \|T_n \|_{L_\infty([0,2\pi ))}}{ \|T_n \|_{L_\infty ([0,2\pi) \setminus B )}}. $$ We also obtain sharp Nikol’skii’s inequalities for the Lorentz spaces and net spaces. Multidimensional variants of Remez and Nikol’skii’s inequalities are investigated.  相似文献   

5.
We introduce an irrational factor of order k defined by \({I_{k}(n) ={\prod_{i=1}^{l}} p_{i}^{\beta_{i}}}\) , where \({n = \prod_{i=1}^{l} p_{i}^{\alpha_{i}}}\) is the factorization of n and \({\beta_{i} = \left\{\begin{array}{ll}\alpha_i, \quad \quad {\rm if} \quad \alpha_i < k \\ \frac{1}{\alpha_i},\quad \quad {\rm if} \quad \alpha_i \geqq k \end{array}\right.}\) . It turns out that the function \({\frac{I_{k} (n)}{n}}\) well approximates the characteristic function of k-free integers. We also derive asymptotic formulas for \({\prod_{v=1}^{n} I_{k}(v)^{\frac{1}{n}}, \sum_{n \leqq x} I_{k}(n)}\) and \({\sum_{n \leqq x} (1 - \frac{n}{x}) I_{k}(n)}\) .  相似文献   

6.
We prove that if m and \({\nu}\) are integers with \({0 \leq \nu \leq m}\) and x is a real number, then
  1. $$\sum_{k=0 \atop k+m \, \, odd}^{m-1} {m \choose k}{k+m \choose \nu} B_{k+m-\nu}(x) = \frac{1}{2} \sum_{j=0}^m (-1)^{j+m} {m \choose j}{j+m-1 \choose \nu} (j+m) x^{j+m-\nu-1},$$ where B n (x) denotes the Bernoulli polynomial of degree n. An application of (1) leads to new identities for Bernoulli numbers B n . Among others, we obtain
  2. $$\sum_{k=0 \atop k+m \, \, odd}^{m -1} {m \choose k}{k+m \choose \nu} {k+m-\nu \choose j}B_{k+m-\nu-j} =0 \quad{(0 \leq j \leq m-2-\nu)}. $$ This formula extends two results obtained by Kaneko and Chen-Sun, who proved (2) for the special cases j = 1, \({\nu=0}\) and j = 3, \({\nu=0}\) , respectively.
  相似文献   

7.
We prove that the inequality $$-\frac{1}{2}\leq {\sum\limits_{k=1}^{n}} \left( \frac{{\rm cos}(2kx)}{2k - 1}+\frac{{\rm sin}((2k - 1)x)}{2k} \right)$$ holds for all natural numbers n and real numbers x with ${x \in [0, \pi]}$ . The sign of equality is valid if and only if n =  1 and x =  π /2.  相似文献   

8.
Let Ω n denote the volume of the unit ball in ${\mathbb{R}^n}$ for ${n\in\mathbb{N}}$ . In the present paper, the authors prove that the sequence ${\Omega_{n}^{1/(n\,{\rm ln}\,n)}}$ is logarithmically convex and that the sequence ${\frac{\Omega_{n}^{1/(n\,{\rm ln}\,n)}}{\Omega_{n+1}^{1/[(n+1)\,{\rm ln}(n+1)]}}}$ is strictly decreasing for n ≥ 2. In addition, some monotonic and concave properties of several functions relating to Ω n are extended and generalized.  相似文献   

9.
We study Sobolev-type metrics of fractional order s ≥ 0 on the group Diff c (M) of compactly supported diffeomorphisms of a manifold M. We show that for the important special case M = S 1, the geodesic distance on Diff c (S 1) vanishes if and only if ${s\leq\frac12}$ . For other manifolds, we obtain a partial characterization: the geodesic distance on Diff c (M) vanishes for ${M=\mathbb{R}\times N, s < \frac12}$ and for ${M=S^1\times N, s\leq\frac12}$ , with N being a compact Riemannian manifold. On the other hand, the geodesic distance on Diff c (M) is positive for ${{\rm dim}(M)=1, s > \frac12}$ and dim(M) ≥ 2, s ≥ 1. For ${M=\mathbb{R}^n}$ , we discuss the geodesic equations for these metrics. For n = 1, we obtain some well-known PDEs of hydrodynamics: Burgers’ equation for s = 0, the modified Constantin–Lax–Majda equation for ${s=\frac12}$ , and the Camassa–Holm equation for s = 1.  相似文献   

10.
In this paper we shall prove that if a non-constant meromorphic f and its k-th derivative f (k) (k ≥ 2) share the value ${a\not= 0,\infty\; CM}$ (IM) and if ${\bar{N}(r,\frac{1}{f})=S(r,f)\;\left(\bar{N}\left(r,\frac{1}{f}\right)+\bar{N}\left(r,\frac{1}{f^{(k)}}\right)=S(r,f)\right)}$ , then ${f \equiv f^{(k)}}$ . These results extend the results in Al-Khaladi (J Al-Anbar Univ Pure Sci 3:69–73, 2009).  相似文献   

11.
Let K be a totally real number field, π an irreducible cuspidal representation of ${{\rm GL}_{2}(K){\backslash}{\rm GL}_{2}(\mathbb{A}K)}$ with unitary central character, and χ a Hecke character of conductor ${\mathfrak{q}}$ . Then ${L(1/2, \pi\oplus\chi) \ll (\mathcal{N}\mathfrak{q})^{\frac{1}{2}-\frac{1}{8}(1-2\theta)+\epsilon}}$ , where 0 ≤ θ ≤ 1/2 is any exponent towards the Ramanujan–Petersson conjecture (θ =  1/9 is admissible). The proof is based on a spectral decomposition of shifted convolution sums and a generalized Kuznetsov formula.  相似文献   

12.
In this paper, we consider functions ${u\in W^{m,1}(0,1)}$ where m ≥ 2 and u(0) = Du(0) = · · · = D m-1 u(0) = 0. Although it is not true in general that ${\frac{D^ju(x)}{x^{m-j}} \in L^1(0,1)}$ for ${j\in \{0,1,\ldots,m-1\}}$ , we prove that ${\frac{D^ju(x)}{x^{m-j-k}} \in W^{k,1}(0,1)}$ if k ≥ 1 and 1 ≤ j + k ≤ m, with j, k integers. Furthermore, we have the following Hardy type inequality, $$\left\|{D^k\left({\frac{D^ju(x)}{x^{m-j-k}}}\right)}\right\|_{L^1(0,1)} \leq \frac {(k-1)!}{(m-j-1)!} \|{D^mu}\|_{L^1(0,1)},$$ where the constant is optimal.  相似文献   

13.
For a bounded, open subset Ω of ${\mathbb{R}^{N}}$ with N > 2, and a measurable function a(x) satisfying 0 < α ≤ a(x) ≤ β, a.e. ${x \in \Omega}$ , we study the existence of positive solutions of the Euler–Lagrange equation associated to the non-differentiable functional $$\begin{array}{ll}J(v) = \frac{1}{2} \int \limits_{\Omega} [a(x)+|v|^{\gamma}]| \nabla v|^{2}- \frac{1}{p} \int \limits_{\Omega}(v_{+})^p,\end{array}$$ if γ > 0 and p > 1. Special emphasis is placed on the case ${2^{*} < p < \frac{2^{*}}{2} ( \gamma +2 )}$ .  相似文献   

14.
Given certain n × n invertible matrices A 1, . . . , A m and 0 ≦ α < n, we obtain the \({H^{p(.)}(\mathbb{R}^n) \to L^{q(.)}(\mathbb{R}^n)}\) boundedness of the integral operator with kernel \({k(x, y) = |x - A_1y|^{-\alpha_1} . . . |x - A_my|^{-\alpha_m}}\) , where α 1 +  . . . + α m n ? α and p(.), q(.) are exponent functions satisfying log-Hölder continuity conditions locally and at infinity related by \({\frac{1}{q(.)} = \frac{1}{p(.)} - \frac{\alpha}{n}}\) . We also obtain the \({H^{p(.)}(\mathbb{R}^n) \to H^{q(.)}(\mathbb{R}^n)}\) boundedness of the Riesz potential operator.  相似文献   

15.
Let {B H (t):t≥0} be a fractional Brownian motion with Hurst parameter \(H\in (\frac {1}{2},1)\) . For the storage process \(Q_{B_{H}}(t)=\sup _{-\infty \le s\le t}\) \(\left (B_{H}(t)-B_{H}(s)-c(t-s)\right )\) we show that, for any T(u)>0 such that \(T(u)=o(u^{\frac {2H-1}{H}})\) , $$\mathbb P (\inf_{s\in[0,T(u)]} Q_{B_{H}}(s)>u)\sim\mathbb P(Q_{B_{H}}(0)>u),$$ as \(u\to \infty \) . This finding, known in the literature as the strong Piterbarg property, goes in line with previously observed properties of storage processes with self-similar and infinitely divisible input without Gaussian component.  相似文献   

16.
Hong-Bin Chen  Wei-Tian Li 《Order》2014,31(1):137-142
Consider families of subsets of [n]:?=?{1,2,...,n} that do no contain a given poset P as a subposet. Let La(n, P) denote the largest size of such families and h(P) denote the height of P. The best known general upper bound for La(n, P) is $\left(\frac{1}{2}(|P|+h(P))-1\right)\left( \begin{array}{l}\,\,\,n \\ \lfloor \frac{n}{2} \rfloor\end{array}\right)$ , due to Bursi and Nagy (2012). This paper provides an improved upper bound $\frac{1}{m+1} \left(|P|+\frac{1}{2}(m^2+3m-2)(h(P)-1)-1\right) \left( \begin{array}{l} \,\,\,n \\ \lfloor \frac{n}{2} \rfloor\end{array}\right) $ , where m can be any positive integer less than $\lceil \frac{n}{2}\rceil$ .  相似文献   

17.
Let {X k,i ; i ≥ 1, k ≥ 1} be a double array of nondegenerate i.i.d. random variables and let {p n ; n ≥ 1} be a sequence of positive integers such that n/p n is bounded away from 0 and ∞. In this paper we give the necessary and sufficient conditions for the asymptotic distribution of the largest entry ${L_{n}={\rm max}_{1\leq i < j\leq p_{n}}|\hat{\rho}^{(n)}_{i,j}|}$ of the sample correlation matrix ${{\bf {\Gamma}}_{n}=(\hat{\rho}_{i,j}^{(n)})_{1\leq i,j\leq p_{n}}}$ where ${\hat{\rho}^{(n)}_{i,j}}$ denotes the Pearson correlation coefficient between (X 1,i , ..., X n,i )′ and (X 1,j ,...,X n,j )′. Write ${F(x)= \mathbb{P}(|X_{1,1}|\leq x), x\geq0}$ , ${W_{c,n}={\rm max}_{1\leq i < j\leq p_{n}}|\sum_{k=1}^{n}(X_{k,i}-c)(X_{k,j}-c)|}$ , and ${W_{n}=W_{0,n},n\geq1,c\in(-\infty,\infty)}$ . Under the assumption that ${\mathbb{E}|X_{1,1}|^{2+\delta} < \infty}$ for some δ > 0, we show that the following six statements are equivalent: $$ {\bf (i)} \quad \lim_{n \to \infty} n^{2}\int\limits_{(n \log n)^{1/4}}^{\infty}\left( F^{n-1}(x) - F^{n-1}\left(\frac{\sqrt{n \log n}}{x}\right) \right) dF(x) = 0,$$ $$ {\bf (ii)}\quad n \mathbb{P}\left ( \max_{1 \leq i < j \leq n}|X_{1,i}X_{1,j} | \geq \sqrt{n \log n}\right ) \to 0 \quad{\rm as}\,n \to \infty,$$ $$ {\bf (iii)}\quad \frac{W_{\mu, n}}{\sqrt {n \log n}}\stackrel{\mathbb{P}}{\rightarrow} 2\sigma^{2},$$ $$ {\bf (iv)}\quad \left ( \frac{n}{\log n}\right )^{1/2} L_{n} \stackrel{\mathbb{P}}{\rightarrow} 2,$$ $$ {\bf (v)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (\frac{W_{\mu, n}^{2}}{n \sigma^{4}} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8\pi}} e^{-t/2}\right \}, - \infty < t < \infty,$$ $$ {\bf (vi)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (n L_{n}^{2} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8 \pi}} e^{-t/2}\right \}, - \infty < t < \infty$$ where ${\mu=\mathbb{E}X_{1,1}, \sigma^{2}=\mathbb{E}(X_{1,1} - \mu)^{2}}$ , and a n  = 4 log p n ? log log p n . The equivalences between (i), (ii), (iii), and (v) assume that only ${\mathbb{E}X_{1,1}^{2} < \infty}$ . Weak laws of large numbers for W n and L n , n ≥  1, are also established and these are of the form ${W_{n}/n^{\alpha}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(\alpha > 1/2)$ and ${n^{1-\alpha}L_{n}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(1/2 < \alpha \leq 1)$ , respectively. The current work thus provides weak limit analogues of the strong limit theorems of Li and Rosalsky as well as a necessary and sufficient condition for the asymptotic distribution of L n obtained by Jiang. Some open problems are also posed.  相似文献   

18.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

19.
In this paper, firstly, we investigate a class of singular eigenvalue problems with the perturbed Hardy–Sobolev operator, and obtain some properties of the eigenvalues and the eigenfunctions. (i.e. existence, simplicity, isolation and comparison results). Secondly, applying these properties of eigenvalue problem, and the linking theorem for two symmetric cones in Banach space, we discuss the following singular elliptic problem $$\left\{\begin{array}{ll}-\Delta_{p}u-a(x)\frac{|u|^{p-2}u}{|x|^{p}}= \lambda \eta(x)|u|^{p-2}u+ f(x,u) \quad x \in \Omega, \\ u =0 \quad\quad\quad\quad\quad\quad\quad x\in\partial \Omega, \end{array} \right.$$ where ${a(x)=(\frac{n-p}{p})^{p}q(x),}$ if 1 < p < n, ${a(x)=(\frac{n-1}{n})^{n} \frac{q(x)}{({\rm log}\frac{R}{|x|})^{n}},}$ if p = n, and prove the existence of a nontrivial weak solution for any ${\lambda \in \mathbb{R}.}$   相似文献   

20.
In this paper we find a new lower bound on the number of imaginary quadratic extensions of the function field $\mathbb{F}_{q}(x)$ whose class groups have elements of a fixed odd order. More precisely, for q, a power of an odd prime, and g a fixed odd positive integer ≥?3, we show that for every ε?>?0, there are $\gg q^{L(\frac{1}{2}+\frac{3}{2(g+1)}-\epsilon)}$ polynomials $f \in \mathbb{F}_{q}[x]$ with $\deg f=L$ , for which the class group of the quadratic extension $\mathbb{F}_{q}(x, \sqrt{f})$ has an element of order g. This sharpens the previous lower bound $q^{L(\frac{1}{2}+\frac{1}{g})}$ of Ram Murty. Our result is a function field analogue which is similar to a result of Soundararajan for number fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号