首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exchange-coupled spin triads nitroxide-copper(II)-nitroxide are the key building blocks of molecular magnets Cu(hfac)(2)L(R). These compounds exhibit thermally induced structural rearrangements and spin transitions, where the exchange interaction between spins of copper(II) ion and nitroxide radicals changes typically by 1 order of magnitude. We have shown previously that electron paramagnetic resonance (EPR) spectroscopy is sensitive to the observed magnetic anomalies and provides information on both inter- and intracluster exchange interactions. The value of intracluster exchange interaction is temperature-dependent (J(T)), that can be accessed by monitoring the effective g-factor of the spin triad as a function of temperature (g(eff)(T)). This paper describes approaches for studying the g(eff)(T) and J(T) dependences and establishes correlations between them. The experimentally obtained g(eff)(T) dependences are interpreted using three different models for the mechanism of structural rearrangements on the molecular level leading to different meanings of the J(T) function. The contributions from these mechanisms and their manifestations in X-ray, magnetic susceptibility and EPR data are discussed.  相似文献   

2.
A set of analogous chalcogen-containing spirocycles, 2,6-dithiaspiro[3.3]heptane, 2,6-diselenaspiro[3.3]heptane, and 2-thia-6-selenaspiro[3.3]heptane [E(2)C(5)H(8), E = S (1), Se (2), and S/Se (3)], has been prepared and fully characterized by spectroscopic methods and by X-ray diffraction. The structural characterization of 2 was presented by us earlier, while the crystal structures of 1 and 3 are reported here for the first time. Molecules 1-3 are built around the central tetrahedral carbon atom and therefore are nonplanar. The E...E separation ranges from 4.690(1) A in 1 to 4.906(1) A in 2. Molecule 3 has statistically mixed positions of sulfur and selenium atoms in the solid state with all geometric characteristics being intermediate between those of 1 and 2. Compounds 2 and 3 have been tested as molecular rigid rod ligands in coordination reactions with transition metal complexes such as Cu(hfac)(2) (4), cis-Co(hfac)(2).2H(2)O (5), and cis-Ni(hfac)(2).2H(2)O (6) (hfac = hexafluoroacetylacetonate). Several coordination products built of two building blocks, M(hfac)(2) (M = Cu, Co, and Ni) and Se(2)C(5)H(8) (2), have been prepared in crystalline form and structurally characterized. The copper-based product (7) is comprised of the oligomeric units {[Cu(hfac)(2)](3).2mu(2)-Se(2)C(5)H(8)-Se,Se'} built on the axial Cu...Se interactions averaged at 2.909 A. These units are further assembled into 1D polymeric chains via intermolecular Cu...F contacts at 2.829 A. The SSeC(5)H(8) (3) ligand was also used in the reaction with Cu(hfac)(2) to afford an analogue of 7, namely {[Cu(hfac)(2)](3).2mu(2)-SSeC(5)H(8)-S,Se} (8). Complex 8 exhibits statistically mixed positions of the donor sulfur and selenium atoms to give an average axial Cu...S/Se contact at 2.892 A. In contrast to the copper complexes of composition 3:2, the stoichiometries of the isolated cobalt and nickel products are 1:1, [M(hfac)(2).Se(2)C(5)H(8)] (M = Co (9) and Ni (10)). Complexes 9 and 10 exhibit 1D polymer structures having alternating metal units cis-M(hfac)(2) and ligands 2 with intermolecuar M...Se separations of 2.6046(8) and 2.5523(16) A, respectively. In all products 7-10 the initial cis or trans geometry of M(hfac)(2) complexes is preserved and the spiro[3.3]heptane ligands act as bidentate linkers bridging transition metal centers via both donor ends. The magnetic properties of this series of new Cu(II), Co(II), and Ni(II) complexes have been tested by variable-temperature magnetic susceptibility measurements.  相似文献   

3.
Metal complexes composed of bidentate 1,2-bis(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (1a) and monodentate 1-(2-methyl-5-phenyl-3-thienyl)-2-(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (2a) photochromic ligands and M(hfac)(2) (M = Zn(II), Mn(II), and Cu(II)) were prepared, and their photoinduced coordination structural changes were studied. X-ray crystallographic analyses showed the formation of coordination polymers and discrete 1:2 complexes for bidentate and monodentate ligands, respectively. The complexes underwent reversible photochromic reactions by alternate irradiation with UV and visible lights in solution as well as in the single-crystalline phase. Upon photoirradiation with UV and visible light, the ESR spectra of the copper complexes of 1a reversibly changed. While the open-ring isomer gave an axial-type spectrum, the photogenerated closed-ring isomer showed a rhombic-type spectrum. This indicates that the photoisomerization induced the change in the coordination structure.  相似文献   

4.
We succeeded in synthesizing of a whole family of isostructural solvates of the copper(II) hexafluoroacetylacetonate complex with pyrazolyl-substituted nitronyl nitroxide (L): Cu(hfac)2L x 0.Solv. The main feature inherent in nature of Cu(hfac)2L x 0.5 Solv single crystals is their incredible mechanical stability and ability to undergo reversible structural rearrangements with temperature variation, accompanied by anomalies on the mu(eff(T)) dependence. Structural investigation of the complexes over a wide temperature range before and after the structural transition and the ensuing magnetic phase transition showed that the spatial peculiarities of the solvent molecules incorporated into the solid govern the character of the mu(eff(T)) dependence and the temperature region of the magnetic anomaly. Thus, doping of crystals with definite solvent molecules could be used as an efficient method of control over the magnetic anomaly temperature (T(a)). The investigation of this special series of crystals has revealed the relationship between the chemical step and the magnetic properties. It was shown that "mild" modification of T(a) for Cu(hfac)2L x 0.5 Solv required a much smaller structural step than the typical change of one -CH2- fragment in a homologous series in organic chemistry. Quantum-chemical calculations with the use of X-ray diffraction data allowed us to trace the character of changes in the exchange interaction parameters in the range of the phase transition. In the temperature range of the phase transition, the exchange parameter changes substantially. The gradual decrease in the magnetic moment, observed in most experiments during sample cooling to T(a), is the result of the gradual increase in the fraction of the low-temperature phase in the high-temperature phase.  相似文献   

5.
Molecular magnets Cu(hfac)(2)L(R) (hfac = hexafluoroacetylacetonate) called "breathing crystals" exhibit thermally and light-induced magnetic anomalies very similar to iron(II) spin-crossover compounds. They are physically different systems, because the spin-state switching occurs in exchange-coupled nitroxide-copper(II)-nitroxide clusters, in contrast to classical spin crossover in d(4)-d(7) transition ions. Despite this difference, numerous similarities in physical behavior of these two types of compounds have been observed, including light-induced excited spin-state trapping (LIESST) phenomenon recently found in the Cu(hfac)(2)L(R) family. Similar to iron(II) spin-crossover compounds, the excited spin state in breathing crystals relaxes to the ground state on the time scale of hours at cryogenic temperatures. In this work, we investigate this slow relaxation in a series of breathing crystals using electron paramagnetic resonance (EPR). Three selected compounds represent the cases of relatively strong or weak cooperativity and different temperature of thermal spin transition. They all were studied in a neat magnetically concentrated form; however, sigmoidal self-accelerating relaxation was not observed. On the contrary, the relaxation shows pronounced self-decelerating character for all studied compounds. Relaxation curves and their temperature dependence could be fitted assuming a tunneling process and broad distribution of effective activation energies in these 1D materials. A number of additional experimental and theoretical arguments support the distribution-based model. Because self-decelerating relaxation behavior was also found in 1D polymeric iron(II) spin-crossover compounds previously, we compared general relaxation trends and mechanisms in these two types of systems. Both similarities and differences of copper-nitroxide-based breathing crystals as compared to iron(II) spin-crossover compounds make future research of light-induced phenomena in these new types of spin-crossover-like systems topical in the field of molecule-based magnetic switches.  相似文献   

6.
Russian Chemical Bulletin - The study is concerned with structural rearrangements in the crystals of heterospin complexes Cu(hfac)2 with nitroxide radicals LR (hfac is hexafluoroacetylacetonate, LR...  相似文献   

7.
A new group of "breathing" crystals has been synthesized. These are aromatic solvates of the copper(II) hexafluoroacetylacetonate complex with spin-labeled pyrazole Cu(hfac)(2)L·0.5Solv, where L is 2-(1-butyl-1H-pyrazol-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl and Solv is benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, styrene, o-xylene, m-xylene, p-xylene, 1,4-bis(trifluoromethyl)benzene, 1-methyl-4-ethylbenzene, 1-methyl-4-vinylbenzene, 1,4-diethylbenzene, 1,2,3-trimethylbenzene, or 1,2,4-trimethylbenzene. The main feature of Cu(hfac)(2)L·0.5Solv single crystals is their remarkable mechanical stability and ability to undergo thermally induced structural rearrangements accompanied by spin-crossover-like phenomena. The structures of Cu(hfac)(2)L·0.5Solv solvates are similar and based on mutually parallel {Cu(hfac)(2)L}(∞) heterospin chains with a "head-to-head" motif. The localization of voids with guest molecules being the same in all crystals, the temperature dependence of the effective magnetic moment (μ(eff)) for Cu(hfac)(2)L·0.5Solv is determined by the structure of the guest molecules, along which the polymer chains are "gliding" when the temperature changes. When the temperature decreased from 300 to 100-50 K, μ(eff) decreased, abruptly or gradually, from 2.7-2.4 to ~1.8 β for the majority of Cu(hfac)(2)L·0.5Solv except the solvates with benzene, toluene, and 1,4-bis(trifluoromethyl)benzene. When Cu(hfac)(2)L·0.5C(6)H(6) and Cu(hfac)(2)L·0.5CH(3)-C(6)H(5) were cooled to 50 K, μ(eff) decreased to ~2.1-2.2 β. When Cu(hfac)(2)L·0.5(1,4-(CF(3))(2)-C(6)H(4)) was cooled to 50 K, μ(eff) initially decreased from ~2.7 to 1.9 β and then abruptly increased to ~2.4 β. A single-crystal X-ray diffraction analysis of each solvate within a temperature range wider than the range of magnetic anomaly temperatures revealed a complex interrelated dynamics of the aromatic solvent guest molecules and heterospin chains. The dynamics largely depended on the orientation of the solvent guest molecules relative to the polymer chains. An analysis of the thermally induced phase transformations revealed a relationship between the structural rearrangement of Cu(hfac)(2)L·0.5Solv and the form of the magnetic anomaly on the μ(eff)(T) curve and between the structural rearrangement of the solvate and the temperature of the magnetic effect.  相似文献   

8.
The crystals of heterospin complexes [M(hfac)(2)L(2)] (where M = Cu, Ni, Co, or Mn; hfac = hexafluoroacetylacetonate; and L = nitronyl nitroxide, 4,4,5,5-tetramethyl-2-(1-methyl-1H-imidazol-5-yl)-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl) were found to make unusual jumping motions. Under ambient conditions, the jumping and various displacements of crystals lasted for several weeks. The mechanical motion was accompanied by the cracking and disintegration of crystals, and a solid [M(hfac)(2)(L(1))(2)] complex with the corresponding imino nitroxide 4,4,5,5-tetramethyl-2-(1-methyl-1H-imidazol-5-yl)-4,5-dihydro-1H-imidazole-1-oxyl (L(1)) was detected. The jumping was accompanied by the spontaneous elimination of oxygen, the source of which was the nitronyl nitroxyl fragment of coordinated L. An X-ray study of [M(hfac)(2)L(2)] (where M = Cu, Ni, Co, or Mn) showed that the molecular structure of all [M(hfac)(2)L(2)] and their packing in the solid state were identical. The packing of [M(hfac)(2)L(2)] was concluded to be critical to the mechanical effect. In complexes with different stoichiometries or different sets of diamagnetic ligands ([Cu(hfac)(2)L](2), [Cu(hfac)(acac)L]·EtOH, [CuPiv(2)L(2)]·2CH(2)Cl(2), and [Cu(hfac)(2)L(2)Cu(2)Piv(4)]·3C(7)H(8) (where acac is acetylacetonate and Piv is trimethylacetate), or free L), the effect vanished when the packing changed.  相似文献   

9.
Two types of Cu(II)(hfac)2 and Mn(II)(hfac)2 complexes of N-(4-pyridylthio)-4-ethoxycarbonyl-2,6-bis(4-chlorophenyl)phenylaminyl (1) and N-(4-pyridylthio)-2,4,6-tris(4-chlorophenyl)phenylaminyl (2) were prepared and their X-ray crystallographic and magnetic studies were performed. Mixtures of Cu(II)(hfac)2 and 1 and Mn(II)(hfac)2 and 2 in anhydrous heptane-benzene solution gave 1 : 2 complexes of M(II)(hfac)2 (M = Cu, Mn) and 1 or 2 in 73-75% yields. For Cu(II)(hfac)2(1)2 and Mn(II)(hfac)2(2)2 X-ray crystallographic analyses were successfully performed. The magnetic behaviors for the two metal complexes were investigated with a SQUID magnetometer. The analyses for the chimolTvs. T plots of Cu(II)(hfac)2(1)2 were carried out by the numerical diagonalization of the Heisenberg Hamiltonian matrix (4096 x 4096 matrix) for the four repeating units of the complex (12-spin system). The exchange interaction between the copper(II) ion and the thioaminyl radicals is ferromagnetic (J1/kB = +28 K) and the interactions between the complexes is antiferromagnetic (J2/kB = -13 K). The magnetic behavior of Mn(II)(hfac)2(2)2 complexes is well analyzed with the theoretical equation of a 1/2-5/2-1/2 three-spin system taking the intermolecular interaction (theta) into account. The exchange interaction between the Mn(II) ion and the thioaminyl radicals is antiferromagnetic (J/kB = -4.2 K) and theta = -1.0 K. These magnetic behaviors could be well explained in terms of their crystal structures.  相似文献   

10.
Crystal structure analyses are reported for anhydrous copper(II) hexafluoroacetylacetonate (Cu(hfac)(2)) and for two of its hydrates. The anhydrous compound (Cu(hfac)(2), 1: P1; at 100 K, a = 5.428(1), b = 5.849(1), c = 11.516(3) A; alpha = 81.47(2), beta = 74.57(2), gamma = 86.96(2) degrees; Z = 1) contains centrosymmetric square-planar complexes with close intermolecular Cu.F contacts. The geometry of the complex is similar to that previously reported for Cu(hfac)(2).toluene. The monoaquo compound (Cu(hfac)(2)(H(2)O), 2: P2(1)/c; at 100 K, a = 10.8300(8), b = 6.5400(6), c = 21.551(3) A; beta = 90.282(8) degrees; Z = 4) consists of square-pyramidal molecules with apical H(2)O ligands, and close-lying F atoms in the sixth coordination sites. The major difference between this structure and the two other polymorphs previously reported is the nature and direction of hydrogen bonds. The yellow-green solid formed from Cu(hfac)(2) with excess H(2)O is identified as the trihydrate. In crystalline form it is the previously unreported [trans-Cu(hfac)(2)(H(2)O)(2)].H(2)O (3: P1; at 150 K, a = 8.3899(3), b = 9.6011(3), c = 11.4852(4) A; alpha = 72.397(2), beta = 79.161(2), gamma = 87.843(2) degrees; Z = 2). There is no conclusive evidence in favor of any solid with the composition Cu(hfac)(2).2H(2)O.  相似文献   

11.
Two mononuclear copper(II) complexes with the unsymmetrical tridentate ligand 2-[((imidazol-2-ylmethylidene)amino)ethyl]pyridine (HL), [Cu(HL)(H2O)](ClO4)2.2H2O (1) and [Cu(HL)Cl2] (2), have been prepared and characterized. The X-ray analysis of 2 revealed that the copper(II) ion assumes a pentacoordinated square pyramidal geometry with an N3Cl2 donor set. When 1 and 2 are treated with an equimolecular amount of potassium hydroxide, the deprotonation of the imidazole moiety promotes a self-assembled process, by coordination of the imidazolate nitrogen atom to a Cu(II) center of an adjacent unit, leading to the polynuclear complexes [[Cu(L)(H2O)](ClO4)]n (3) and [[Cu(L)Cl].2H2O]n (4). Variable-temperature magnetic data are well reproduced for one-dimensional infinite regular chain systems with J = -60.3 cm(-1) and g = 2.02 for 3 and J = -69.5 cm(-1) and g = 2.06, for 4. When 1 is used as a "ligand complex" for [M(hfac)2] (M = Cu(II), Ni(II), Mn(II), Zn(II)) in a basic medium, only the imidazolate-bridged trinuclear complexes [Cu(L)(hfac)M(hfac)2Cu(hfac)(L)] (M = Zn(II), Cu(II)) (5, 6) can be isolated. Nevertheless, the analogous complex containing Mn(II) as the central metal (7) can be prepared from the precursor [Cu(HL)Cl2] (2). All the trinuclear complexes are isostructural. The structures of 5 and 6 have been solved by X-ray crystallographic methods and consist of well-isolated molecules with Ci symmetry, the center of symmetry being located at the central metal. Thus, the copper(II) fragments are in trans positions, leading to a linear conformation. The magnetic susceptibility data (2-300 K), which reveal the occurrence of antiferromagnetic interactions between copper(II) ions and the central metal, were quantitatively analyzed for symmetrical three-spin systems to give the coupling parameters JCuCu = -37.2 and JCuMn = -3.7 cm(-1) with D = +/-0.4 cm(-1) for 6 and 7, respectively. These magnetic behaviors are compared with those for analogous systems and discussed on the basis of a localized-orbital model of exchange interactions.  相似文献   

12.
In an effort to better understand the antiproliferative effects of the tridentate hydrazone chelators di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and di-2-pyridyl ketone benzoyl hydrazone (HPKBH), we report the coordination chemistry of these ligands with the divalent metal ions, Mn, Co, Ni, Cu, and Zn. These complexes are compared with their Fe(II) analogues which were reported previously. The crystal structures of Co(PKIH)(2), Ni(PKIH)(2), Cu(PKIH)(2), Mn(PKBH)(2), Ni(PKBH)(2), Cu(PKBH)(2), and Zn(PKBH)(2) are reported where similar bis-tridenate coordination modes of the ligands are defined. In pure DMF, all complexes except the Zn(II) compounds exhibit metal-centered M(III/II) (Mn, Fe, Co, Ni) or M(II/I) (Cu) redox processes. All complexes show ligand-centered reductions at low potential. Electrochemistry in a mixed water/DMF solvent only elicited metal-centered responses from the Co and Fe complexes. Remarkably, all complexes show antiproliferative activity against the SK-N-MC neuroepithelioma cell line similar to (HPKIH) or significantly greater than that of the (HPKBH) ligand which suggests a mechanism that does not only involve the redox activity of these complexes. In fact, we suggest that the complexes act as lipophilic transport shuttles that allow entrance to the cell and enable the delivery of both the ligand and metal which act in concert to inhibit proliferation.  相似文献   

13.
(TTF-salphen)M compounds (TTF-salphen(2-)=4,5-bis(propylthio)tetrathiafulvalene-N,N'-phenylenebis(salicylideneimine) dianion; M=Cu(II) and Ni(II)) have been treated with Ln(hfac)(3)·2H(2)O precursors (hfac(-)=1,1,1,5,5,5-hexafluoroacetylacetonate anion; Ln=Gd(III), Tb(III), and Dy(III)) to elaborate unprecedented 3d/4f TTF-based heterobimetallic complexes of formula [(TTF-salphen)MLn(hfac)(3)]. All the structures of these compounds have been resolved by X-ray diffraction on single crystals. The structures of these complexes are formed by a TTF-salphen(2-) ligand coordinated to the 3d metal ions in the inert tetradentate N(2)O(2) site. The Ln(hfac)(3) fragment is coordinated to the (TTF-salphen)M one through the two phenolate bridges. Even if the complexes are similar in both Cu(II) and Ni(II) families, the crystal packing is different. In the first case, dimers of TTF-salphen(2-) donors constitute the organic network. In the other case, a reminiscent organic network is observed with S···S contacts. The photophysical properties of [(TTF-salphen)CuDy(hfac)(3)] (3) in chloroform solution highlight the redshift of the TTF→salphen charge transfer (400 cm(-1)) relative to the analogue excitations in (TTF-salphen)Cu, which attest to the stability of these structures in solution. Static magnetic measurements have allowed us to quantify the ferromagnetic interactions (J=+1.29 cm(-1)) between Cu(II) and Gd(III) in the [(TTF-salphen)CuGd(hfac)(3)] complex. Finally, an empirical method that consists of the comparisons of the magnetic properties of [(TTF-salphen)CuTb(hfac)(3)] with [(TTF-salphen)NiTb(hfac)(3)] and [(TTF-salphen)CuDy(hfac)(3)] with [(TTF-salphen)NiDy(hfac)(3)] has established that ferromagnetic interactions take place between Cu(II) and Tb(III) ions, whereas unusual antiferromagnetic interactions have been identified between Cu(II) and Dy(III) ions.  相似文献   

14.
Wang H  Liu Z  Liu C  Zhang D  Lü Z  Geng H  Shuai Z  Zhu D 《Inorganic chemistry》2004,43(13):4091-4098
Three new complexes of the formula M(2)L(2) derived from 2-(4-quinolyl)nitronyl nitroxide (4-QNNN) and M(hfac)(2) [M = Mn(II), Co(II), and Cu(II)], (4-QNNN)(2).[Mn(hfac)(2)](2) (1), (4-QNNN)(2).[Co(hfac)(2)](2).2H(2)O (2), and (4-QNNN)(2).Cu(hfac)(2).Cu'(hfac)(2) (3), were synthesized and characterized structurally as well as magnetically. Complexes 1 and 2 are four-spin complexes with quadrangle geometry, in which both the nitrogen atoms of quinoline rings and oxygen atoms of nitronyl nitroxides are involved in the formation of coordination bonds. For complex 3, however, the nitrogen atoms of quinoline rings are coordinated with Cu(II) ion to afford a three-spin complex, which is further linked to another molecule of Cu(hfac)(2) (referred to as Cu'(hfac)(2)) to form a 1D alternating chain. The magnetic behaviors of the three complexes were investigated. For complex 1, as the nitronyl nitroxides and Mn(II) ions are strongly antiferromagnetically coupled, consequently its temperature dependence of magnetic susceptibility was fitted to the model of spin-dimer with S = 2, yielding the intradimer magnetic exchange constant of J = -0.82 cm(-1). For complex 2, the temperature dependence of the magnetic susceptibility in the T > 50 K region was simulated with the model of two-spin unit with S(1) = 3/2 and S(2) = 1/2, leading to J = -321.9 cm(-1) for the magnetic interaction due to Co(II).O coordination bonding, D = -16.3 cm(-1) (the zero-field splitting parameter), g = 2.26, and zJ = -3.8 cm(-1) for the magnetic interactions between Co(II) ions and nitronyl nitroxides through quinoline rings and those between nitronyl nitroxides due to the short O.O short contacts. The temperature dependence of magnetic susceptibility of 3 was approximately fitted to a model described previously affording J(1) = -6.52 cm(-1) and J(2) = 3.64 cm(-1) for the magnetic interaction between nitronyl nitroxides and Cu(II) ions through the quinoline unit via spin polarization mechanism and the weak O.Cu coordination bonding, respectively.  相似文献   

15.
We have exploited potential utility of 4,4,5,5-tetramethylimidazolin-1-oxyl (hin) and 4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide (hnn) as mu-1,4 and mu-1,5 bridging ligands, respectively, carrying an unpaired electron in development of metal-radical hybrid magnets. X-ray diffraction measurements of [Cu(hfac)(2)hin] (1), [Mn(hfac)(2)hin] (2), and [Mn(hfac)(2)hnn] (3) revealed one-dimensional metal-radical alternating chain structures, where hfac denotes 1,1,1,5,5,5-hexafluoropentane-2,4-dionate. Magnetic measurements of 1 indicate the presence of intrachain ferromagnetic coupling between copper and radical spins. The magnetic exchange parameter was estimated as 2J/k = 56.8 K based on an S = 1/2 equally spaced ferromagnetic chain model (H = -2J summation operator S(i).S(i+1)). This ferromagnetic interaction can be explained in terms of the axial coordination of the hin nitrogen or oxygen to Cu(II). The chi(m)T value of 2 and 3 increased on cooling, and the magnetic data could be analyzed by Seiden's ferrimagnetic chain model, giving 2J/k = -325 and -740 K, respectively. The antiferromagnetic interaction of 2 and 3 can be attributed to orbital overlap between the manganese and the oxygen or nitrogen magnetic orbitals. The exchange interactions between Cu-hin and Mn-hnn are larger than those of typical Cu- and Mn-nitronyl nitroxide complexes, indicating that the choice of small ligands is a promising strategy to bestow strong exchange interaction. Compound 3 became a ferrimagnet below 4.4 K, owing to ferromagnetic coupling among the ferrimagnetic chains.  相似文献   

16.
Four tripodal ligands with an N(3)O coordination sphere were synthesized: (2-hydroxy-3-tert-butyl-5-nitrobenzyl)bis(2-pyridylmethyl)amine (LNO(2)H), (2-hydroxy-3-tert-butyl-5- fluorobenzyl)bis(2-pyridylmethyl)amine (LFH), (2-hydroxy-3,5-di-tert-butylbenzyl)bis(2-pyridylmethyl)amine (LtBuH) and (2-hydroxy-3-tert-butyl-5-methoxybenzyl)bis(2-pyridylmethyl)amine (LOMeH). Their square-pyramidal copper(II) complexes, in which the phenol subunit occupies an axial position, were prepared and characterized by X-ray crystallography and UV/Vis and EPR spectroscopy. The phenolate moieties of the copper(II) complexes of LtBuH and LOMeH were electrochemically oxidized to phenoxyl radicals. These complexes are EPR-active (S=1), highly stable (k(decay)=0.008 min(-1) for [Cu(II)(LOMe(.))(CH(3)CN)](2+)) and stoichiometrically oxidise benzyl alcohol. Two additional tripodal ligands providing an N(2)O(2) coordination sphere were also studied: (2-pyridylmethyl)(2-hydroxy-3-tert-butyl-5-methoxybenzyl)(2-hydroxy-3-tert-butyl-5-nitrobenzyl)amine (L'OMeNO(2)H(2)) and (2-pyridylmethyl)bis(2-hydroxy-3-tert-butyl-5- methoxy)benzylamine (L'OMe(2)H(2)). Their copper(II) complexes were isolated as dimers ([Cu(2II)(L'OMe(2))(2)], [Cu(2II)(L'OMeNO(2))(2)]) that are converted to monomers on addition of pyridine. The complexes were investigated by X-ray crystallography and UV/Vis and EPR spectroscopy. Their one-electron electrochemical oxidation leads to copper(II)-phenoxyl systems that are less stable than those of the N(3)O complexes. The N(2)O(2) complexes are more reactive than the N(3)O analogues: they aerobically oxidize benzyl alcohol to benzaldehyde at a higher rate, as well as ethanol to acetaldehyde (40-80 turnovers).  相似文献   

17.
Shin DM  Lee IS  Chung YK 《Inorganic chemistry》2003,42(26):8838-8846
Self-assemblies of rigid angular ligands with 120 degrees molecular angle and metal centers have been investigated with the aim of achieving the rational construction and modification of coordination polymer structures. The reactions of Co(NCS)(2) with 1,3-bis(trans-4-styrylpyridyl)benzene (L(1)()), 2,6-bis(trans-4-styrylpyridyl)pyridine (L(2)()), 1,3-bis(trans-4-styrylpyrimidyl)benzene (L(3)()), and 1,3-bis(trans-4-styrylquinoly)benzene (L(4)()) afford complexes [Co(L(1)())(2)(NCS)(2)]( infinity ) (1), [Co(L(2)())(2)(NCS)(2)]( infinity ) (2), Co(L(3)())(2)(NCS)(2)(CH(3)OH)(2) (3), and [Co(L(4)())(NCS)(2)]( infinity ) (4), respectively. The resulting complexes exhibit open framework, stairlike hydrogen-bonded chain and single-stranded helical coil structures, which are controlled by the variation of the geometry around the coordination site in ligands. Moreover, the coordination of L(1)() and L(2)() to Mn(hfac)(2) (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate) yields single-stranded helical coordination polymers of [Mn(L(1)())(hfac)(2)]( infinity ) (5) and [Mn(L(2)())(hfac)(2)]( infinity ) (6), respectively.  相似文献   

18.
The gas-phase ligand exchange reactions between Co(II) and Zn(II) complexes containing the acetylacetonate (acac), hexafluoroacetylacetonate (hfac), and trifluorotrimethylacetylacetonate (tftm) ligands were investigated using a triple quadrupole mass spectrometer. The gas-phase mixed ligand products of [Cu(acac)(tftm)](+), [Ni(acac)(tftm)](+), [Cu(hfac)(tftm)](+), and [Ni(hfac)(tftm)](+) were formed following the co-sublimation of either homo-metal or hetero-metal precursors and are reported herein for the first time. The fragmentation patterns of these mixed ligand species along with those of Cu(tftm)(2) and Ni(tftm)(2) are also presented. The collision cell of the instrument was utilized to examine the gas-phase reactions between mass-selected ions and specific neutral target compounds.  相似文献   

19.
A complex of bis(hexafluoroacetylacetonato)copper(II) with a stable acyclic nitroxide (tert-butyl)(3-keto-2-methylbutyl-2)nitroxyl oxime (L), Cu(hfac)2L, has been synthesized. The structure of the complex was studied by X-ray diffraction analysis. The compound has a molecular structure with chelate coordination of the nitroxide. The tetragonally distorted octahedral environment of the copper(II) ion is formed by the oxygen atoms of the hfac anions and by the nitrogen and oxygen atoms of the oxime and nitroxyl groups of L, respectively. The nitroxyl group lies in the equatorial plane of the octahedron (dCu?O=1.907 Å). This type of N?O coordination leads to strong antiferromagnetic exchange interactions between the unpaired electrons of the copper(II) ion and the coordinated nitroxyl group and, as a consequence, to diamagnetism of Cu(hfac)2L.  相似文献   

20.
Following the structural concept of copper-containing proteins in which dinuclear copper centers are connected by hydroxide bridging ligands, a bidentate copper(II) complex has been incorporated into nano-confined MCM-41 silica by a multistep sequential grafting technique. Characterization by a combination of EPR spectroscopy, X-ray photoelectron spectroscopy (XPS), UV/Vis spectroscopy, IR spectroscopy , and solid-state (13)C and (29)Si cross-polarization magic-angle spinning (CP-MAS) NMR suggests that dinuclear Cu complexes are bridged by hydroxide and other counterions (chloride or perchlorate ions), similar to the situation for EPR-undetectable [Cu(II)···Cu(II)] dimer analogues in biological systems. More importantly, a dynamic mononuclear-dinuclear equilibrium between different coordination modes of copper is observed, which strongly depends on the nature of the counterions (Cl(-) or ClO(4)(-)) in the copper precursor and the pore size of the silica matrix (the so-called confinement effect). A proton-transfer mechanism within the hydrogen-bonding network is suggested to explain the dynamic nature of the dinuclear copper complex supported on the MCM-41 silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号