首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this note we consider the homogenization problem for a matrix locally periodic elliptic operator on R d of the form A ε = ?divA(x, x/ε)?. The function A is assumed to be Hölder continuous with exponent s ∈ [0, 1] in the “slow” variable and bounded in the “fast” variable. We construct approximations for (A ε ? μ)?1, including one with a corrector, and for (?Δ) s/2(A ε ? μ)?1 in the operator norm on L 2(R d ) n . For s ≠ 0, we also give estimates of the rates of approximation.  相似文献   

2.
We consider a self-adjoint elliptic operator Aε, ε> 0, on L2(Rd; Cn) given by the differential expression b(D)*g(x/ε)b(D). Here \(b(D) = \sum\nolimits_{j = 1}^d {b_j D_j }\) is a first-order matrix differential operator such that the symbol b(ξ) has maximal rank. The matrix-valued function g(x) is bounded, positive definite, and periodic with respect to some lattice. We study the operator exponential \({e^{ - i\tau {A_\varepsilon }}}\), where τ ∈ R. It is shown that, as ε → 0, the operator \({e^{ - i\tau {A_\varepsilon }}}\) converges to \({e^{ - i\tau {A^0}}}\) in the norm of operators acting from the Sobolev space Hs(Rd;Cn) (with suitable s) to L2(Rd;Cn). Here A0 is the effective operator with constant coefficients. Order-sharp error estimates are obtained. The question about the sharpness of the result with respect to the type of the operator norm is studied. Similar results are obtained for more general operators. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation i?τuε(x, τ) = Aεuε(x, τ).  相似文献   

3.
Let d ? 3 be an integer, and set r = 2d?1 + 1 for 3 ? d ? 4, \(\tfrac{{17}}{{32}} \cdot 2^d + 1\) for 5 ? d ? 6, r = d2+d+1 for 7 ? d ? 8, and r = d2+d+2 for d ? 9, respectively. Suppose that Φ i (x, y) ∈ ?[x, y] (1 ? i ? r) are homogeneous and nondegenerate binary forms of degree d. Suppose further that λ1, λ2,..., λ r are nonzero real numbers with λ12 irrational, and λ1Φ1(x1, y1) + λ2Φ2(x2, y2) + · · · + λ r Φ r (x r , y r ) is indefinite. Then for any given real η and σ with 0 < σ < 22?d, it is proved that the inequality
$$\left| {\sum\limits_{i = 1}^r {{\lambda _i}\Phi {}_i\left( {{x_i},{y_i}} \right) + \eta } } \right| < {\left( {\mathop {\max \left\{ {\left| {{x_i}} \right|,\left| {{y_i}} \right|} \right\}}\limits_{1 \leqslant i \leqslant r} } \right)^{ - \sigma }}$$
has infinitely many solutions in integers x1, x2,..., x r , y1, y2,..., y r . This result constitutes an improvement upon that of B. Q. Xue.
  相似文献   

4.
We consider a self-adjoint matrix elliptic operator A ε, ε > 0, on L 2(R d ;C n ) given by the differential expression b(D)*g(x/ε)b(D). The matrix-valued function g(x) is bounded, positive definite, and periodic with respect to some lattice; b(D) is an (m × n)-matrix first order differential operator such that mn and the symbol b(ξ) has maximal rank. We study the operator cosine cos(τA ε 1/2 ), where τ ∈ R. It is shown that, as ε → 0, the operator cos(τA ε 1/2 ) converges to cos(τ(A 0)1/2) in the norm of operators acting from the Sobolev space H s (R d ;C n ) (with a suitable s) to L 2(R d ;C n ). Here A 0 is the effective operator with constant coefficients. Sharp-order error estimates are obtained. The question about the sharpness of the result with respect to the type of the operator norm is studied. Similar results are obtained for more general operators. The results are applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation ? τ 2 u ε (x, τ) = ?A ε u ε (x, τ).  相似文献   

5.
In L 2(?3;?3), we consider a self-adjoint operator ? ε , ε > 0, generated by the differential expression curl η(x/ε)?1 curl??ν(x/ε) div. Here the matrix function η(x) with real entries and the real function ν(x) are periodic with respect to some lattice, are positive definite, and are bounded. We study the behavior of the operators cos(τ? ε 1/2 ) and ? ε ?1/2 sin(τ? ε 1/2 ) for τ ∈ ? and small ε. It is shown that these operators converge to cos(τ(?0)1/2) and (?0)?1/2 sin(τ(?0)1/2), respectively, in the norm of the operators acting from the Sobolev space H s (with a suitable s) to ?2. Here ?0 is an effective operator with constant coefficients. Error estimates are obtained and the sharpness of the result with respect to the type of operator norm is studied. The results are used for homogenizing the Cauchy problem for the model hyperbolic equation ? τ 2 v ε = ?? ε v ε , div v ε = 0, appearing in electrodynamics. We study the application to a nonstationary Maxwell system for the case in which the magnetic permeability is equal to 1 and the dielectric permittivity is given by the matrix η(x/ε).  相似文献   

6.
A uniform, on ?, estimate for the increment of the spectral function θ(λ; x, y) at x = y is proved for the self-adjoint Schrödinger operator A defined on the entire axis ? by the differential operation (?d/dx)2 + q(x) with a potential-distribution q(x) that uniformly locally belongs to the space W 2 ?1. As a consequence, it is shown that for any function f(x) from the domain of power Aα of the operator with α > 1/4, the spectral expansion of the function that corresponds to the operator A is convergent absolutely and uniformly on the entire axis ?.  相似文献   

7.
The system of equations \(\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u\), where A(·) ∈ ?n × n, B(·) ∈ ?n × m, S(·) ∈ Rn × m, is considered. The elements of the matrices A(·), B(·), S(·) are uniformly bounded and are functionals of an arbitrary nature. It is assumed that there exist k elements \({\alpha _{{i_i}{j_l}}}\left( \cdot \right)\left( {l \in \overline {1,k} } \right)\) of fixed sign above the main diagonal of the matrix A(·), and each of them is the only significant element in its row and column. The other elements above the main diagonal are sufficiently small. It is assumed that m = n ?k, and the elements βij(·) of the matrix B(·) possess the property \(\left| {{\beta _{{i_s}s}}\left( \cdot \right)} \right| = {\beta _0} > 0\;at\;{i_s}\; \in \;\overline {1,n} \backslash \left\{ {{i_1}, \ldots ,{i_k}} \right\}\). The other elements of the matrix B(·) are zero. The positive definite matrix H = {hij} of the following form is constructed. The main diagonal is occupied by the positive numbers hii = hi, \({h_{{i_l}}}_{{j_l}}\, = \,{h_{{j_l}{i_l}}}\, = \, - 0.5\sqrt {{h_{{i_l}}}_{{j_l}}} \,\operatorname{sgn} \,{\alpha _{{i_l}}}_{{j_l}}\left( \cdot \right)\). The other elements of the matrix H are zero. The analysis of the derivative of the Lyapunov function V(x) = x*H–1x yields hi\(\left( {i \in \overline {1,n} } \right)\) and λi ≤ 0 \(\left( {i \in \overline {1,n} } \right)\) such that for S(·) = H?1ΛB(·), Λ = diag(λ1, ..., λn), the system of the considered equations becomes globally exponentially stable. The control is robust with respect to the elements of the matrix A(·).  相似文献   

8.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

9.
Let {Q n (α,β) (x)} n=0 denote the sequence of polynomials orthogonal with respect to the non-discrete Sobolev inner product
$\langle f,g\rangle=\int_{-1}^{1}f(x)g(x)d\mu_{\alpha,\beta}(x)+\lambda\int_{-1}^{1}f'(x)g'(x)d\nu_{\alpha,\beta}(x)$
where λ>0 and d μ α,β(x)=(x?a)(1?x)α?1(1+x)β?1 dx, d ν α,β(x)=(1?x) α (1+x) β dx with aα,β>0. Their inner strong asymptotics on (?1,1), a Mehler-Heine type formula as well as some estimates of the Sobolev norms of Q n (α,β) are obtained.
  相似文献   

10.
We study the linear operator pencil A(λ) = L?λV, λ ∈ ?, where L is the Sturm–Liouville operator with potential q(x) and V is the operator of multiplication by the weight ρ(x). The potential and the weight are assumed to belong to the space W 2 ?1 [0, π]. For the pencil A(λ), we seek formulas for the traces of higher negative orders, i.e., for the sums \(\sum\nolimits_{n = 1}^\infty {\lambda _n^{ - p}} \), p ≥ 2, where λn, n ∈ ?, is the sequence of eigenvalues of the pencil numbered in nondescending order of absolute values. Trace formulas in terms of the weight ρ(x) and the integral kernel of the operator L?1 are obtained, and the relationship between these formulas and the classical results about traces of integral operators is described. The theoretical results are illustrated by examples.  相似文献   

11.
Let L=?Δ+V be a Schrödinger operator on ? d , d≥3. We assume that V is a nonnegative, compactly supported potential that belongs to L p (? d ), for some p>d /2. Let K t be the semigroup generated by ?L. We say that an L 1(? d )-function f belongs to the Hardy space \(H^{1}_{L}\) associated with L if sup?t>0|K t f| belongs to L 1(? d ). We prove that \(f\in H^{1}_{L}\) if and only if R j fL 1(? d ) for j=1,…,d, where R j =(?/? x j )L ?1/2 are the Riesz transforms associated with L.  相似文献   

12.
For the self-adjoint Schrödinger operator ? defined on ? by the differential operation ?(d/dx)2 + q(x) with a distribution potential q(x) uniformly locally belonging to the space W 2 ?1, we describe classes of functions whose spectral expansions corresponding to the operator ? absolutely and uniformly converge on the entire line ?. We characterize the sharp convergence rate of the spectral expansion of a function using a two-sided estimate obtained in the paper for its generalized Fourier transforms.  相似文献   

13.
We consider a collection of n independent random subsets of [m] = {1, 2, . . . , m} that are uniformly distributed in the class of subsets of size d, and call any two subsets adjacent whenever they intersect. This adjacency relation defines a graph called the uniform random intersection graph and denoted by G n,m,d . We fix d = 2, 3, . . . and study when, as n,m → ∞, the graph G n,m,d contains a Hamilton cycle (the event denoted \( {G_{n,m,d}} \in \mathcal{H} \)). We show that \( {\mathbf{P}}\left( {{G_{n,m,d}} \in \mathcal{H}} \right) = o(1) \) for d 2 nm ?1 ? lnm ? 2 ln lnm → ? and \( {\mathbf{P}}\left( {{G_{n,m,d}} \in \mathcal{H}} \right) = 1 - o(1) \) for 2nm ?1 ? lnm ? ln lnm → +.  相似文献   

14.
Let A and A 0 be linear continuously invertible operators on a Hilbert space ? such that A ?1 ? A 0 ?1 has finite rank. Assuming that σ(A 0) = ? and that the operator semigroup V +(t) = exp{iA 0 t}, t ≥ 0, is of class C 0, we state criteria under which the semigroups U ±(t) = exp{±iAt}, t ≥ 0, are of class C 0 as well. The analysis in the paper is based on functional models for nonself-adjoint operators and techniques of matrix Muckenhoupt weights.  相似文献   

15.
We solve the problem of describing the solutions of E-operators of order μ ≥ 1 admitting at z = 0 a basis over C of local solutions which are all holomorphic at z = 0. We prove that the components of such a basis can be taken of the form \(\sum {_{j = 1}^\ell } {P_j}\left( z \right){e^{{\beta _{{j^z}}}}}\), where ? ≤ μ, β 1,...,β ?\(\overline {\mathbb{Q}} \) x, and P 1(z),..., P ?(z) ∈ \(\overline {\mathbb{Q}} \)[z].  相似文献   

16.
Let O ? R d be a bounded domain of class C 1,1. Let 0 < ε - 1. In L 2(O;C n ) we consider a positive definite strongly elliptic second-order operator B D,ε with Dirichlet boundary condition. Its coefficients are periodic and depend on x/ε. The principal part of the operator is given in factorized form, and the operator has lower order terms. We study the behavior of the generalized resolvent (B D,ε ? ζQ 0(·/ε))?1 as ε → 0. Here the matrix-valued function Q 0 is periodic, bounded, and positive definite; ζ is a complex-valued parameter. We find approximations of the generalized resolvent in the L 2(O;C n )-operator norm and in the norm of operators acting from L 2(O;C n ) to the Sobolev space H 1(O;C n ) with two-parameter error estimates (depending on ε and ζ). Approximations of the generalized resolvent are applied to the homogenization of the solution of the first initial-boundary value problem for the parabolic equation Q 0(x/ε)? t v ε (x, t) = ?(B D,ε v ε )(x, t).  相似文献   

17.
The Picard dimension \(\dim \mu\) of a signed Radon measure μ on the punctured closed unit ball 0?x|?≦?1 in the d-dimensional euclidean space with d?≧?2 is the cardinal number of the set of extremal rays of the cone of positive continuous distributional solutions u of the Schrödinger equation (???Δ?+?μ)u?=?0 on the punctured open unit ball 0?x|?x|?=?1. If the Green function of the above equation on 0?x|?Δ?+?μ)u?=?δ y , the Dirac measure supported by the point y, exists for every y in 0?x|?μ is referred to as being hyperbolic on 0?x|?γ is a radial Radon measure which is both positive and absolutely continuous with respect to the d-dimensional Lebesgue measure dx whose Radon–Nikodym density dγ(x)/dx is bounded by a positive constant multiple of |x|???2. The purpose of this paper is to show that the Picard dimensions of hyperbolic radial Radon measures μ are invariant under basic perturbations \(\gamma: \dim(\mu+\gamma)=\dim\mu\). Three applications of this invariance are also given.  相似文献   

18.
The paper outlines why the spectrum of maximal ideals Spec ? A of a countable-dimensional differential ?-algebra A of transcendence degree 1 without zero divisors is locally analytic, which means that for any ?-homomorphism ψ M: A → ? (MSpec ? A) and any aA the Taylor series \(\widetilde {{\psi _M}}{\left( a \right)^{\underline{\underline {def}} }}\sum\limits_{m = 0}^\infty {\psi M\left( {{a^{\left( m \right)}}} \right)} \frac{{{z^m}}}{{m!}}\) has nonzero radius of convergence depending on the element aA.  相似文献   

19.
We give several sufficient conditions on an infinite integer matrix (d ij ) for the set R = {Σ ijα, i>j d ij : α ? ?, |α| < ∞} to be a density intersective set, including the cases d nj = j n (1 + O(1/n 1+ε )) and \(0 < d_{nj} = o(\sqrt {n/\log n} )\). For the latter, a concentration function estimate that is of independent interest is applied to sums of sequences of 2-valued random variables whose means may grow as \(\sqrt {n/\log n} \).  相似文献   

20.
Let S be a countable semigroup acting in a measure-preserving fashion (g ? T g ) on a measure space (Ω, A, µ). For a finite subset A of S, let |A| denote its cardinality. Let (A k ) k=1 be a sequence of subsets of S satisfying conditions related to those in the ergodic theorem for semi-group actions of A. A. Tempelman. For A-measureable functions f on the measure space (Ω, A, μ) we form for k ≥ 1 the Templeman averages \(\pi _k (f)(x) = \left| {A_k } \right|^{ - 1} \sum\nolimits_{g \in A_k } {T_g f(x)}\) and set V q f(x) = (Σ k≥1|π k+1(f)(x) ? π k (f)(x)|q)1/q when q ∈ (1, 2]. We show that there exists C > 0 such that for all f in L 1(Ω, A, µ) we have µ({x ∈ Ω: V q f(x) > λ}) ≤ C(∫Ω | f | dµ/λ). Finally, some concrete examples are constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号