首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents flow pattern experimental results obtained during two-phase upward flow across a horizontal tube bundle. Experiments were performed for flows across a normal triangular tube bundle with 19 mm OD tubes and transversal pitch of 24 mm. Results were obtained for gas and liquid superficial velocities ranging from 0.13 to 10.00 m/s and 0.02 to 1.50 m/s, respectively. Flow patterns were identified subjectively based on visual observations through side windows, and objectively using the k-means clustering method based on signals of a differential pressure transducer and a capacitive sensor. Bubbles, large bubbles, dispersed bubbles, churn, intermittent and annular flow patterns were identified subjectively. The clustering method satisfactorily identified groups of data corresponding to the distinct flow patterns, which were compared with predictive methods available in the open literature. New predictive methods for transitions between flow patterns are proposed based on the flow patterns identified objectively. The proposed methods predicted accurately the data obtained in the present study as well as experimental results and flow pattern maps available in the open literature for distinct geometries.  相似文献   

2.
This paper presents an application of the wavelet analysis technique for two-phase flow pattern identification by using the void fraction signals obtained from a multi-channel Impedance Void Meter (IVM) in a vertical-upward air–water flow. A new method for the objective discrimination of the two-phase flow pattern has been developed to provide information regarding the local energy of void fraction signals at a given scale on the joint time–frequency diagram. The void signals are processed with Continuous Wavelet Transform (CWT) to get the local wavelet energy coefficients map on the time–frequency diagram. The effective local wavelet energy and the effective scale are then calculated. Then the criteria for flow pattern identification are, finally, obtained. A series of void fraction measurements were conducted over a wide range of air–water vertical-upward flow condition to provide an extensive database to cover several types of flow patterns. The results show that the proposed method has a high precision for characterizing different flow regimes in two-phase flow, and is considerably more promising for the online recognition of two-phase flow patterns due to the short time of data processing.  相似文献   

3.
Additional data has been obtained on flow pattern transitions during cocurrent gas-liquid flow in vertical and upwardly inclined lines. These data, together with those previously available in the literature, have enabled the development of improved dimensionless correlations for flow pattern boundaries. The individual boundary lines bave been combined into simple overall flow pattern maps.  相似文献   

4.
A fast response, linearized X-ray void measurement system has been used to obtain statistical measurements in normally fluctuating air-water flow in a rectangular channel. It is demonstrated that the probability density function (PDF) of the fluctuations in void fraction may be used as an objective and quantitative flow pattern discriminator for the three dominant patterns of bubbly, slug, and annular flow. This concept is applied to data over the range of 0.0 to 37 m/sec mixture velocities to show that slug flow is simply a transitional, periodic time combination of bubbly and annular flows. Film thicknesses calculated from the PDF data are similar in magnitude in both slug and annular flows. Calculation of slug length and residence time ratios along with bubble lengths in slug flow are also readily obtainable from the statistical measurements. Spectral density measurements showed bubbly flow to be stochastic while slug and annular flows showed periodicities correlatable in terms of the liquid volume flux.  相似文献   

5.
Extensive new data have been obtained on the transitions between two-phase flow patterns during co-current gas liquid flow in horizontal lines. Fluid properties were varied in a systematic manner to determine the effects of liquid viscosity, liquid density, interfacial tension and gas density. Line sizes varied from 1.2 to 5 cm for most of the tests. Visual observations were supplemented by an analysis of pressure drop fluctuations and hence the present data are believed to be less subjective than most past observations.

The transition data from the present tests, as well as available literature data, were compared to the most frequently used transition line correlations. In almost all cases serious deficiencies were observed. Revised dimensionless correlations which fit present data, and those previously available, are presented.  相似文献   


6.
A comparison of the performance of 68 void fraction correlations based on unbiased data set (2845 data points) covering wide range of parameters than previous assessments was made. A comprehensive literature search was undertaken for the available void fraction correlations and experimental void fraction data. After systematically refining the data, the performance of the correlations in correctly predicting the diverse data sets was evaluated. Comparisons between the correlations were made and appropriate recommendations drawn. The analysis showed that most of the correlations developed are very restricted in terms of handling a wide variety of data sets. Based on the observations made, an improved void fraction correlation which could acceptably handle all data sets regardless of flow patterns and inclination angles was suggested. It was shown that this correlation has the best predictive capability than all the correlations considered in this study.  相似文献   

7.
The classification of macroscale, mesoscale and microscale channels with respect to two-phase processes is still an open question. The main objective of this study focuses on investigating the macro-to-microscale transition during flow boiling in small scale channels of three different sizes with three different refrigerants over a range of saturation conditions to investigate the effects of channel confinement on two-phase flow patterns and liquid film stratification in a single circular horizontal channel (Part 2 covers the flow boiling heat transfer and critical heat flux). This paper presents the experimental two-phase flow pattern transition data together with a top/bottom liquid film thickness comparison for refrigerants R134a, R236fa and R245fa during flow boiling in small channels of 1.03, 2.20 and 3.04 mm diameter. Based on this work, an improved flow pattern map has been proposed by determining the flow patterns transitions existing under different conditions including the transition to macroscale slug/plug flow at a confinement number of Co ≈ 0.3-0.4. From the top/bottom liquid film thickness comparison results, it was observed that the gravity forces are fully suppressed and overcome by the surface tension and shear forces when the confinement number approaches 1, Co ≈ 1. Thus, as a new approximate rule, the lower threshold of macroscale flow is Co = 0.3-0.4 while the upper threshold of symmetric microscale flow is Co ≈ 1 with a transition (or mesoscale) region in-between.  相似文献   

8.
Experiments with refrigerant two-phase flow in a horizontal pipe have been performed and data on flow pattern, void fraction and pressure drop have been obtained. Refrigerants used were R12 and R22, and the range of saturation pressure was from 5.7 to 19.6 bar.In this paper, the experimental equipment and procedure are described in detail, and the data are both tabulated and presented graphically.  相似文献   

9.
Based on experimental data, flow regime maps were drawn for different inclination angles, including horizontal and vertical flow. Different empirical equations for the flow regime transitions are proposed that are functions of inclination angle for both upflow and downflow. In general, the flow regimes and their transitions for upflow were similar to those proposed by Duns and Ros for vertical upflow. For downflow, the flow regimes and their transitions conformed more to the Mandhane et al. type of flow regime map. The stratified flow region in downflow was found to be affected appreciably by the angle of inclination. A detailed comparison of the proposed transition equations with a number of flow regime maps is also presented.  相似文献   

10.
The gas-liquid flow inside a circular, isothermal column reactor with a vertical axis has been studied using numerical simulations. The flow is assumed to be in the laminar, bubbly flow regime which is characterized by a suspension of discrete air bubbles in a continuous liquid phase such as glycerol water. The mathematical formulation is based on the conservation of mass and momentum principle for the liquid phase. The gas velocity distribution is calculated via an empirically prescribed relative velocity as a function of void fraction. The interface viscous drag forces are prescribed empirically. For some cases a profile shape is assumed for the void ratio distribution. The influence of various profile shapes is investigated. The results are compared with those where the void ratio distribution is calculated from the conservation of mass equation. The mathematical model has been implemented by modifying a readily available computer code for single-phase newtonian fluid flows. The numerical discretization is based on a finite volume approach. The predictions show a good agreement with measurements. The circulation pattern seems not to be so sensitive to the actual shape of the void fraction profiles, but the inlet distribution of it is important. A significantly different flow pattern results when the void fraction distribution is calculated from the transport equation, as compared to those with a priori prescribed profiles. When the void fraction is uniformly distributed over the whole distributor plate, no circulation is observed. Calculations also show that even the two-phase systems with a few discrete bubbles can be simulated successfully by a continuum model.  相似文献   

11.
The two-phase flow in the corrugated gap created by two adjacent plates of a plate heat exchanger was investigated experimentally. One setup consisting of a transparent corrugated gap was used to visualize the two-phase flow pattern and study the local phenomena of phase distribution, pressure drop and void fraction. Saturated two-phase R365mfc and an air-water mixture were used as working fluids.In a second experimental setup, the heat transfer coefficients and the pressure drop inside an industrial plate heat exchanger during the condensation process of R134a are determined. Both experimental setups use the same type of plates, so the experimental results can be connected and a flow pattern model for the condensation in plate heat exchangers can be derived. In this work the results of the flow pattern visualization, the two-phase pressure drop in the corrugated gap and the void fraction analysis by measurement of the electrical capacity are presented. A new pressure drop correlation is derived, which takes into account different flow patterns, that appear during condensation. The mean deviation of the presented pressure drop model compared to the experimental data and data from other experimental works is 18.9%. 81.7% of the calculated pressure drop lies within ±30% compared to the experimental data.  相似文献   

12.
A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy’s correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly–churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.  相似文献   

13.
Mechanistic models for flow regime transitions and drag forces proposed in an earlier work are employed to predict two-phase flow characteristics in multi-dimensional porous layers. The numerical scheme calls for elimination of velocities in favor of pressure and void fraction. The momentum equations for vapor and liquid then can be reduced to a system of two partial differential equations (PDEs) which must be solved simultaneously for pressure and void fraction.

Solutions are obtained both in two-dimensional cartesian and in axi-symmetric coordinate systems. The porous layers in both cases are composed of regions with different permeabilities. The finite element method is employed by casting the PDEs in their equivalent variational forms. Two classes of boundary conditions (specified pressure and specified fluid fluxes) can be incorporated in the solution. Volumetric heating can be included as a source term. The numerical procedure is thus suitable for a wide variety of geometry and heating conditions. Numerical solutions are also compared with available experimental data.  相似文献   


14.
This paper presents experimental investigations on nitrogen/non-Newtonian fluid two-phase flow in vertical noncircular microchannels, which have square or triangular cross-section with the hydraulic diameters being Dh = 2.5, 2.886 and 0.866 mm, respectively, by visualization method. Three non-Newtonian aqueous solutions with typical rheological properties, i.e., 0.4% carboxymethyl cellulose (CMC), 0.2% polyacrylamide (PAM) and 0.2% xanthan gum (XG) are chosen as the working fluids. The common flow patterns are identified as slug flow, churn flow and annular flow. The dispersed bubble flow is only found in the case with nitrogen/CMC solution two-phase flow in the largest channel. A new flow pattern of nitrogen/PAM solution two-phase flow, named chained bubble/slug flow, is observed in all the test channels. The flow regime maps are also developed and the results show that the rheological properties of the non-Newtonian fluid have remarkable influence on the flow pattern transitions. The geometrical factors of the microchannel such as the cross-section shape and hydraulic diameter of the channel can also affect the flow regime map. Finally, the results obtained in this work are compared with the available flow pattern transitions.  相似文献   

15.
Two-phase flow in vertical noncircular channels   总被引:16,自引:0,他引:16  
Experiments have been performed for vertical two-phase flow of air-water mixtures through several noncircular channels. Frictional pressure drops are discussed in terms of the correlation method for single-phase turbulent flow developed first in this study. Results for rising velocity of large gas bubble and mean void fraction are also discussed. Flow pattern boundaries are presented and compared with each other as to channel geometry.  相似文献   

16.
This paper is concerned with the flow patterns which occur in upwards gas-liquid two-phase flow in vertical tubes. The basic flow patterns are described and the use of flow pattern maps is discussed. The transition between plug flow and churn flow is modelled under the assumption that flooding of the falling liquid film limits the stability of plug flow. The resulting equation is combined with other flow pattern transition equations to produce theoretical flow pattern maps, which are then tested against experimental flow pattern data. Encouraging agreement is obtained.  相似文献   

17.
Two-phase internal flow is present in many piping system components. Although two-phase damping is known to be a significant constituent of the total damping, the energy dissipation mechanisms that govern two-phase damping are not well understood. In this paper, damping of three different clamped–clamped tubes subjected to two-phase air–water internal axial flow is investigated. Experimental data are reported, showing a strong dependence of two-phase damping on void fraction, flow velocity and flow regime. Data-points plotted on two-phase flow pattern maps indicate that damping is greater in a bubbly flow regime. The two-phase damping ratio reaches a maximum value at the highest void fraction before the transition to a churn flow regime. An analytical model that relates the two-phase damping ratio to the interface surface area is proposed. The model is based on rigid spherical bubbles in cubic elementary flow volumes. The analytical results are well correlated with the experiments.  相似文献   

18.
This work focuses on gas/non-Newtonian power-law fluid stratified pipe flow. Two different theoretical approaches to obtain pressure gradient and hold-up predictions are presented: the steady fully developed two-fluid model and the pre-integrated model. The theoretical predictions are compared with experimental data available for horizontal and for slightly downward inclined air/shear thinning fluid stratified flow taken from literature. The predictions of the pre-integrated model are validated showing a good agreement when compared with experimental data. The criteria for the transition from the stratified flow pattern are applied to gas/non-Newtonian stratified flow. The neutral stability analysis (smooth/wavy stratified flow) and the well-posedness (existence region of stratified flow) of governing equations are carry out. The predicted transition boundaries are obtained using the steady fully developed two-fluid model and the pre-integrated model, where the shape factors and their derivatives are accounted for. A comparison between the predicted boundaries and experimental flow pattern maps is presented and shows a good agreement. A comment on the shear stress modeling by the pre-integrated model is provided.  相似文献   

19.
Patterns were generated inside a horizontal cylinder rotating at low speeds. The cylinder was filled with a very low volume liquid fraction of 1.8% of Newtonian fluid and the rotation speed ranged between 0.08 and 5.2 s−1. A novel laser-plane technique was utilized to obtain time series from each pattern. This enabled the characterization of fluid patterns using Fourier spectral (FS) and dynamical-systems (chaotic) techniques such as the recurrence map, correlation dimension (D2) and Hurst exponent (H). Four patterns were found (fingers, furrows, waterfall and smooth tooth) before annular flow was reached. The results indicate that the FS technique not is suitable for flow pattern characterization; and H only has the ability to indicate a possible pattern change. The best tool for indicating the pattern transitions and the inner coat liquid evolution was found to be recurrence maps and D2.  相似文献   

20.
The two-phase flow in a short horizontal channel of a rectangular cross-section with the height of 100–500 µm and width of 9–40 mm was studied experimentally. The use of the Schliren and fluorescent methods made it possible to reveal the flow of liquid in the channel and to determine its characteristics quantitatively. The features of the churn, jet and drop flow patterns were studied in details. Two particular regimes that can be distinguished represent formation of immobile drops on the channel walls because of the liquid film or liquid bridges breakage and appearance of mobile drops due to the two-phase flow instabilities. It is found out that formation of various two-phase flow patterns and transitions between them are determined by instabilities of the liquid–gas flow in the side parts of a channel. Frontal instability has been observed during the liquid–gas interaction in the region of liquid output from the nozzle. It is shown that a change in the height and width of the horizontal channels has a substantial effect on the boundaries between the flow regimes. One of the results is that the region of the churn regime increases significantly with decreasing thickness of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号