首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a new manufacturing method to generate monodisperse microbubble contrast agents with polydispersity index (sigma) values of <2% through microfluidic flow-focusing. Micron-sized lipid shell-based perfluorocarbon (PFC) gas microbubbles for use as ultrasound contrast agents were produced using this method. The poly(dimethylsiloxane) (PDMS)-based devices feature expanding nozzle geometry with a 7 microm orifice width, and are robust enough for consistent production of microbubbles with runtimes lasting several hours. With high-speed imaging, we characterized relationships between channel geometry, liquid flow rate Q, and gas pressure P in controlling bubble sizes. By a simple optimization of the channel geometry and Q and P, bubbles with a mean diameter of <5 microm can be obtained, ideal for various ultrasonic imaging applications. This method demonstrates the potential of microfluidics as an efficient means for custom-designing ultrasound contrast agents with precise size distributions, different gas compositions and new shell materials for stabilization, and for future targeted imaging and therapeutic applications.  相似文献   

2.
A method to separate suspended particles from their medium in a continuous mode at microchip level is described. The method combines an ultrasonic standing wave field with the extreme laminar flow properties obtained in a silicon micro channel. The channel was 750 microm wide and 250 microm deep with vertical side walls defined by anisotropic wet etching. The suspension comprised "Orgasol 5 microm" polyamide spheres and distilled water. The channel was perfused by applying an under pressure (suction) to the outlets. The channel was ultrasonically actuated from the back side of the chip by a piezoceramic plate. When operating the acoustic separator at the fundamental resonance frequency the acoustic forces were not strong enough to focus the particles into a well defined single band in the centre of the channel. The frequency was therefore changed to about 2 MHz, the first harmonic with two pressure nodes in the standing wave, and consequently two lines of particles were formed which were collected via the side outlets. Two different microchip separator designs were investigated with exit channels branching off from the separation channel at angles of 90 degrees and 45 degrees respectively. The 45 degrees separator displayed the most optimal fluid dynamic properties and 90% of the particles were gathered in 2/3 of the original fluid volume.  相似文献   

3.
In this paper, an efficient way for robustness testing of gradient elution liquid chromatographic methods is proposed and tested on model mixtures comprising cilazapril, hydrochlorothiazide, and their degradation products, solutes that differ not only in polarities, but also in solubility and absorption characteristics. In general, the robustness could be tested with respect to various responses: resolution, retention factor, selectivity factor, change of detector response, etc. In chromatographic methods, the separation of the adjacent peaks is mandatory, and, consequently, the resolution is usually used as response. In isocratic elution methods, the resolution threshold depends on many factors, such as sizes of adjacent peaks, peak shapes, and asymmetry factor. At the same time, the situation is even more complex in gradient elution methods, because separation depends on a larger number of parameters, such as gradient profile, column geometry, mobile phase flow rate, column equilibration between gradient runs, etc. To ensure baseline separation, the authors propose application of separation criterion (s) as response and indirect modeling in the robustness evaluation. Examined response in this approach is represented by the difference between the retention time of the beginning of the peak and the retention time of the end of the previously eluting peak of the critical pair. Moreover, the proposed methodology included reusing experiments from the optimization phase to define a robust chromatographic region without increasing the number of experiments. It was shown that method robustness can be easily and efficiently evaluated by this methodology.  相似文献   

4.
Lee CY  Chen CM  Chang GL  Lin CH  Fu LM 《Electrophoresis》2006,27(24):5043-5050
This study uses simple and reliable microfabrication techniques to fabricate CE biochips, integrating a novel contactless conductivity detector in a miniaturized detection system in a microfluidic biochip. The off-channel electrodes are deposited around side channels by Au sputtering and patterned using a standard "lift-off" process. A vacuum fusion bonding process is employed to seal the lower substrate containing the microchannels and the electrodes to an upper glass cover plate. The variations in the capacitance between the semicircular detection electrodes in the side channels are measured as different samples and ions pass through the detection region of the CE separation channel. Samples of Rhodamine B, commercial sports drinks, mineral waters, and a red wine, respectively, are mixed in different buffer solutions, separated, and successfully detected using the developed device. The semicircular detection electrodes for the contactless conductivity detector have microscale dimensions and provide a valuable contribution to the realization of the lab-on-a-chip concept.  相似文献   

5.
This paper presents the use of a physical model and numerical simulation in the investigation of traveling electric fields on capillary electrophoresis (CE) chips. The principal material transport mechanisms of electrokinetic migration, ionic concentration, fluid flow, and diffusion are all taken into consideration. Traditionally, the high electric field strength required for the separation of biological samples by microfluidic devices has involved the application of high external voltages. In contrast, this study presents a proposal for samples separation by means of a moving electric field within a low voltage-driven CE chip. Under this proposal, the separation channel is partitioned into a series of smaller separation zones by means of electrode pairs. This paper considers two different electrode configurations, namely arranged along a single side of the separation channel, and arranged on two sides of the separation channel. The quality of the separation achieved with these two configurations is then compared with the traditional straight separation channel approach. The results confirm that the proposed method is successful in maintaining an adequate field strength for separation purposes in a low-voltage driven CE chip. Furthermore, it is determined that the best separation results are obtained using electrodes arranged along both sides of the separation channel.  相似文献   

6.
The robustness of a generic method for chiral separation in capillary electrophoresis using highly-sulfated cyclodextrins in a low pH phosphate buffer and the "short-end injection technique" was studied. In this study, we focused on the robustness of the separations and not of the quantitative analysis of the enantiomers. The robustness was evaluated for the enantiomeric separation of a basic (propranolol), a neutral (praziquantel) and an acidic (warfarin) compound. The influence of eight factors which were believed to affect significantly the separations was studied using a 11-factor, 12-experiment Plackett-design. Statistical interpretation of the factor effects on different analytical responses (selectivity and resolution) was performed. The separations of the three compounds could be considered as rather robust as the factor effects were generally not significant (alpha = 0.05) and small.  相似文献   

7.
A method to continuously separate different particle types in a suspension is reported. Acoustic forces in a standing wave field were utilized to discriminate lipid particles from erythrocytes in whole blood. The presented technology proposes a new method of cleaning, i.e. removing lipid emboli from, shed blood recovered during cardiac surgery. Blood contaminated with lipid particles enter a laminar flow micro channel. Erythrocytes and lipid particles suspended in blood plasma are exposed to a half wavelength standing wave field orthogonal to the direction of flow as they pass through the channel. Because of differences in compressibility and density the two particle types move in different directions, the erythrocytes towards the centre of the channel and the lipid particles towards the side walls. The end of the channel is split into three outlet channels conducting the erythrocytes to the centre outlet and the lipid particles to the side outlets due to the laminar flow profile. The separation channel was evaluated in vitro using polyamide spheres suspended in water, showing separation efficiencies approaching 100%. The system was also evaluated on whole blood using tritium labelled lipid particles added to bovine blood. More than 80% of the lipid particles could be removed while approximately 70% of the erythrocytes were collected in one third of the original fluid volume. The study showed that the further reduced micro channel dimensions provided improved performance with respect to; (i) separation efficiency, (ii) actuation voltage, and (iii) volumetric throughput as compared to earlier work.  相似文献   

8.
Fang Zhang  Dongqing Li 《Electrophoresis》2014,35(20):2922-2929
A new microfluidic method of particle separation was proposed and studied theoretically in this paper. This method is based on the induced charge electro‐osmotic flow (ICEOF) and polarizability of dielectric particles. In this method, a pair of metal plates is embedded on the side channel walls to create a region of circulating flows under applied electric field. When a dielectric particle enters this region, the vortices produced by ICEOF around the particle will interact with the circulating flows produced by the metal plates. Such hydrodynamic interaction influences the particle's trajectory, and may result in the particle being trapped in the flow circulating zone or passing through this flow circulating zone. Because the hydrodynamic interaction is sensitive to the applied electric field, and the polarizability and the size of the particles, separation of different particles can be realized by controlling these parameters. Comparing with electrophoresis and dielectrophoresis methods, this strategy presented in this paper is simple and sensitive.  相似文献   

9.
Wu ZY  Fang F  Josserand J  Girault HH 《Electrophoresis》2007,28(24):4612-4619
On-column conductivity detection in capillary-chip electrophoresis was achieved by actively coupling the high electric field with two sensing electrodes connected to the main capillary channel through two side detection channels. The principle of this concept was demonstrated by using a glass chip with a separation channel incorporating two double-Ts. One double-T was used for sample introduction, and the other for detection. The two electrophoresis electrodes apply the high voltage and provide the current, and the two sensing electrodes connected to the separation channel through the second double-T and probe a potential difference. This potential difference is directly related to the local resistance or the conductivity of the solution defined by the two side channels on the main separation channel. A detection limit of 15 microM (600 ppb or 900 fg) was achieved for potassium ion in a 2 mM Tris-HCl buffer (pH 8.7) with a linear range of 2 orders of magnitude without any stacking. The proposed detection method avoids integrating the sensing electrodes directly within the separation channel and prevents any direct contact of the electrodes with the sample. The baseline signal can also be used for online monitoring of the electric field strength and electroosmosis mobility characterization in the separation channel.  相似文献   

10.
Nam J  Lim H  Kim D  Shin S 《Lab on a chip》2011,11(19):3361-3364
Platelet separation from blood is essential for biochemical analyses and clinical diagnosis. In this article, we propose a method to separate platelets from undiluted whole blood using standing surface acoustic waves (SSAWs) in a microfluidic device. A polydimethylsiloxane (PDMS) microfluidic channel was fabricated and integrated with interdigitated transducer (IDT) electrodes patterned on a piezoelectric substrate. To avoid shear-induced activation of platelets, the blood sample flow was hydrodynamically focused by introducing sheath flow from two side-inlets and pressure nodes were designed to locate at side walls. By means of flow cytometric analysis, the RBC clearance ratio from whole blood was found to be over 99% and the purity of platelets was close to 98%. Conclusively, the present technique using SSAWs can directly separate platelets from undiluted whole blood with higher purity than other methods.  相似文献   

11.
Chiral stationary phases (CSPs) containing L-proline indananilide chiral selectors attached through a multivalent dendritic linker to monodisperse macroporous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) beads have been prepared using two different approaches. The convergent method involves the preparation of ligands in solution and their subsequent attachment to the support. The divergent approach is based on the stepwise "on-bead" formation of the linker using methods that are typical of solid-phase synthesis. While the convergent CSPs feature well-defined ligands, their loading is relatively low. In contrast, the divergent technique affords CSPs with higher loading but with more limited control over precise ligand architecture. Excellent enantioselectivities characterized by separation factors of up to 31 were achieved for the separation of racemic N-(3,5-dinitrobenzoyl)-alpha-amino acid alkyl amides with these new CSPs under normal-phase HPLC conditions.  相似文献   

12.
We derive an eigenvector-following technique for locating transition points in an N-dimensional energy landscape. A separate Lagrange multiplier is used for each eigendirection to provide maximum flexibility in determining step sizes. In contrast to previous techniques based on a similar approach, we provide a simple algorithm for choosing specific values of these Lagrange multipliers. We demonstrate the robustness of the algorithm using two-dimensional Cerjan-Miller and Adams landscapes. The technique has also been applied to the S(12) molecular cluster.  相似文献   

13.
This paper describes an acoustic method for inducing rotating vortex flows in microchannels. An ultrasonic crystal is used to create an acoustic standing wave field in the channel and thus induce a Rayleigh flow transverse to the laminar flow in the channel. Mixing in microchannels is strictly diffusion-limited because of the laminar flow, a transverse flow will greatly enhance mixing of the reactants. This is especially evident in chemical microsystems in which the chemical reaction is performed on a solid phase and only one reactant is actually diffusing. The method has been evaluated on two different systems, a mixing channel with two parallel flows and a porous silicon micro enzyme reactor for protein digestion. In both systems a significant increase of the mixing ratio is detected in a narrow band of frequency for the actuating ultrasound.  相似文献   

14.
Separation of colloidal particles of different sizes is becoming increasingly important due to rapid developments in the area of proteomics, genetic engineering, drug discovery, etc. In particular, there is a need to accomplish these separations on a microscale in 'lab-on-a-chip' devices. In this paper, we propose a new method for accomplishing separation of charged colloids of different sizes in a microchannel. This method involves a combination of pulses of lateral electric fields and Poiseuille flow in the axial direction. We develop a model for this separation technique and obtain closed form solutions for the mean velocity and the dispersion coefficient for a pulse of molecules introduced into the channel. These expressions are then utilized to determine the channel length and the separation time. For reasonable value of design constants, the proposed technique can separate molecules of different sizes that have diffusivities of 10(-10) and 0.5 x 10(-10) m2/s in 15.7 s in a 3.7 mm long channel. The length and the time increase to 5.45 cm and 231 s if the ratio of the diffusivities is reduced from 2 to 1.2, i.e., the latter diffusivity is increased to 0.835 x 10(-10) m2/s, while keeping all the other parameters the same. If the diffusivities are about 10(-9) m(2)/s, the length and the time for separation are 1 cm and 17.5 s for D1/D2=2, and 16 cm and 269 s for D1/D2=1.2.  相似文献   

15.
This feasibility study deals with column switching in zone electrophoresis (ZE) separations on a column coupling (CC) chip. The column switching implemented into the ZE separations an on-chip sample clean up applicable for both the multicomponent and high salinity samples. In addition, complemented by different separation mechanisms in the coupled columns (channels), it provided benefits of two-dimensional separations. Properly timed column switching gave column-to-column transfers of the analytes, characterized by 99-102% recoveries, delivered to the second separation stage on the chip the analyte containing fractions contaminated only with minimum amounts of the matrix constituents. A diffusion driven transport of the matrix constituents to the second channel of the chip (due to direct contacts of the electrolyte solutions in the bifurcation region), representing 0.1-0.2% of the loaded sample constituents, was found to accompany the sample clean up performed on the CC chip. This source of potential disturbances to the separation in the second channel, however, is not detectable in a majority of practical situations. With respect to a 900 nl volume of the sample channel on the CC chip, the electric field and isotachophoresis (ITP) stackings were employed to minimize the injection dispersion in the separations and concentrate the analytes. Here, the column switching, removing a major part of the stacker from the separation system, provided a tool effective in a control of the destacking of analytes. Highly reproducible ZE separations as attained in this work also for the chip-to-chip and equipment-to-equipment frames can be ascribed, at least in part, to suppressions of electroosmotic and hydrodynamic flows of the solutions in which the separations were performed.  相似文献   

16.
Conventional microchip applications involving capillary electrophoresis (CE) typically inject a sample along one channel and use an intersection of two channels to define the sample plug--the portion of sample to be analysed along a second channel. In contrast to this method of zone separation, frontal analysis proceeds by injecting sample continuously into a single channel or column. Frontal analysis is more common in macroscopic procedures but there are benefits in sensitivity and device density to its application to electrophoresis on microchips. This work compares conventional microchip zone analysis with frontal analysis in the separation of PCR products. Although we detect on the order of 5000 fluorophores with a compact instrument using the zone separation CE method, we found a several-fold increase in the effective signal-to-noise ratio by using a frontal analysis method. By removing the need for additional channels and reservoirs the frontal method would allow device densities to be significantly increased, potentially improving the cost-effectiveness of microchip analyses in applications such as medical diagnostics.  相似文献   

17.
A multivariate approach for testing the robustness of a capillary electrophoresis method using the "short-end injection" technique is presented. Firstly, a Plackett and Burman (PB) design with 11 factors (eight real factors and three dummies) was used to identify the critical factors on resolution, plate number, plate count, asymmetry and assay. Then, the factors which were found to be significant were studied in a central composite design to predict the variation of resolution inside the area investigated in the PB design. PB and central composite designs yielded conclusions that were in good agreement with one another. They showed that the separation could be considered as robust, notwithstanding the fact that some factors where found to be statistically significant and should be controlled (injected volume and electrolyte concentration). Using the factor values which gave the worst-case situation for Rs still led to acceptable values for this parameter.  相似文献   

18.
A novel pressure-driven sample injection method was developed as an alternative to electrokinetic injection, and electrophoretic separation was carried out on a microfabricated device employing this method. This method enables a defined volume of liquid dispensing, followed by instantaneous injection driven by pneumatic pressure, greatly simplifying the injection procedure. A particular microstructure, called a "metering chamber", has been designed for the quantitative dispensing of an ultra-low volume of sample liquid; a "hydrophobic passive valve" equipped with an air vent channel is employed for injecting a dispensed sample into the separation channel. The reproducibility of dispensing was 3.3% (n = 15), expressed by the variation of dispensed volumes. The electrophoretic separation of DNA fragments was performed using this injection method, varying the injection volumes from 0.45 to 4.0 nL, and the separation efficiencies were compared. This precise injection method, easily variable in injection volumes, is highly suitable for quantitative as well as qualitative electrophoretic analyses.  相似文献   

19.
We have designed and constructed a microfabricated device for separation of double-stranded DNA fragments using a crosslinked sieving medium and spatially selective extraction of the desired fraction. Based on measuring the width and spacing of migrating bands, a narrow side channel is constructed perpendicular to the separation channel to collect the DNA fragments of interest. This selective collection technique was tested using a 100 base pair double-stranded DNA ladder. We successfully demonstrate selective extraction of the desired fragment with minimal interference from the adjacent bands in an electric field of 31 V/cm. We also achieve extraction of multiple DNA fragments using an array of microelectrodes in this side channel. The device uses cross-linked polyacrylamide gel matrix, allowing the separation to be performed in a distance of 1 cm or less and at a low electric field strength. Together with on-chip electrode, this design is amenable to integration with reaction chambers into a single device for portable genetic-based analysis.  相似文献   

20.
This paper focuses on the optimization with a design of experiments of a new CE method for the simultaneous separation of four carbohydrates of interest (fructose, glucose, lactose, and sucrose) and five potentially interfering carbohydrates (ribose, xylose, maltose, mannose, and galactose) with a highly alkaline separation electrolyte for subsequent applications to food, beverage, forensic, or pharmaceutical samples. First, the factors that potentially affect the carbohydrate migration were identified: NaOH concentration in the separation electrolyte, separation temperature, and separation electrolyte conductivity. A central composite design was then carried out to determine and model the effects of these three factors on normalized migration times and separation efficiency. From the model, an optimization of the separation was carried out using a desirability analysis based on resolutions between adjacent peaks and analysis time. The optimum conditions obtained were a separation electrolyte composed of 98 mM NaOH and 120 mM NaCl to adjust the conductivity at 4.29 S/m and a separation temperature fixed at 26.5°C. Finally, these conditions were experimentally confirmed and the robustness of the obtained separation was checked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号