首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For fractionation of intact proteins by molecular weight (MW), a sharply improved two-dimensional (2D) separation is presented to drive reproducible and robust fractionation before top-down mass spectrometry of complex mixtures. The “GELFrEE” (i.e., gel-eluted liquid fraction entrapment electrophoresis) approach is implemented by use of Tris-glycine and Tris-tricine gel systems applied to human cytosolic and nuclear extracts from HeLa S3 cells, to achieve a MW-based fractionation of proteins from 5 to >100 kDa in 1 h. For top-down tandem mass spectroscopy (MS/MS) of the low-mass proteome (5–25 kDa), between 5 and 8 gel-elution (GE) fractions are sampled by nanocapillary-LC-MS/MS with 12 or 14.5 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Single injections give about 40 detectable proteins, about half of which yield automated ProSight identifications. Reproducibility metrics of the system are presented, along with comparative analysis of protein targets in mitotic versus asynchronous cells. We forward this basic 2D approach to facilitate wider implementation of top-down mass spectrometry and a variety of other protein separation and/or characterization approaches.  相似文献   

2.
Mass spectrometry used in combination with a wide variety of separation methods is the principal methodology for proteomics. In bottom-up approach, proteins are cleaved with a specific proteolytic enzyme, followed by peptide separation and MS identification. In top-down approach intact proteins are introduced into the mass spectrometer. The ions generated by electrospray ionization are then subjected to gas-phase separation, fragmentation, fragment separation, and automated interpretation of mass spectrometric and chromatographic data yielding both the molecular weight of the intact protein and the protein fragmentation pattern. This approach requires high accuracy mass measurement analysers capable of separating the multi-charged isotopic cluster of proteins, such as hybrid ion trap-Fourier transform instruments (LTQ-FTICR, LTQ-Orbitrap). Front-end separation technologies tailored for proteins are of primary importance to implement top-down proteomics. This review intends to provide the state of art of protein chromatographic and electrophoretic separation methods suitable for MS coupling, and to illustrate both monodimensional and multidimensional approaches used for LC-MS top-down proteomics. In addition, some recent progresses in protein chromatography that may provide an alternative to those currently employed are also discussed.  相似文献   

3.
Mass Spectrometry (MS) allows the analysis of proteins and peptides through a variety of methods, such as Electrospray Ionization-Mass Spectrometry (ESI-MS) or Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). These methods allow identification of the mass of a protein or a peptide as intact molecules or the identification of a protein through peptide-mass fingerprinting generated upon enzymatic digestion. Tandem mass spectrometry (MS/MS) allows the fragmentation of proteins and peptides to determine the amino acid sequence of proteins (top-down and middle-down proteomics) and peptides (bottom-up proteomics). Furthermore, tandem mass spectrometry also allows the identification of post-translational modifications (PTMs) of proteins and peptides. Here, we discuss the application of MS/MS in biomedical research, indicating specific examples for the identification of proteins or peptides and their PTMs as relevant biomarkers for diagnostic and therapy.  相似文献   

4.
Mass spectrometry is fast becoming a vital approach not only for the identification and quantification of proteins, but also for the study of the noncovalent assemblies they form. Approaches for ionizing, transmitting, and detecting protein complexes intact in the mass spectrometer are now well established. The challenge has therefore shifted to developing and applying mass spectrometry approaches to elucidate the structure of such species. A crucial aspect to this goal is inducing their disassembly in the gas phase to mine information as to their composition and organization. Here the consequences of collisionally activating protein complexes are illustrated through ion mobility mass spectrometry measurements and discussed in the context of the current literature. Although a consensus view of the mechanism of dissociation is starting to emerge, it is also clear that a number of aspects remain unresolved. These outstanding questions and frontier challenges must be addressed if gas-phase dissociative approaches are to reach their full potential in the study of protein assemblies.  相似文献   

5.
6.
Electron transfer dissociation (ETD)-based top-down mass spectrometry (MS) is the method of choice for in-depth structure characterization of large peptides, small- and medium-sized proteins, and non-covalent protein complexes. Here, we describe the performance of this approach for structural analysis of intact proteins as large as the 80 kDa serotransferrin. Current time-of-flight (TOF) MS technologies ensure adequate resolution and mass accuracy to simultaneously analyze intact 30–80 kDa protein ions and the complex mixture of their ETD product ions. Here, we show that ETD TOF MS is efficient and may provide extensive sequence information for unfolded and highly charged (around 1 charge/kDa) proteins of ~30 kDa and structural motifs embedded in larger proteins. Sequence regions protected by disulfide bonds within intact non-reduced proteins oftentimes remain uncharacterized due to the low efficiency of their fragmentation by ETD. For serotransferrin, reduction of S–S bonds leads to significantly varied ETD fragmentation pattern with higher sequence coverage of N- and C-terminal regions, providing a complementary structural information to top-down analysis of its oxidized form.
Figure
ETD TOF MS provides extensive sequence information for unfolded and highly charged proteins of ~30 kDa and above. In addition to charge number and distribution along the protein, disulfide bonds direct ETD fragmentation. For intact non-reduced 80 kDa serotransferrin, sequence regions protected by disulfide bonds oftentimes remain uncharacterized. Reduction of disulfide bonds of serotransferrin increases ETD sequence coverage of its N- and C-terminal regions, providing a complementary structural information to the top-down analysis of its oxidized form  相似文献   

7.
Ambient surface mass spectrometry is an emerging field which shows great promise for the analysis of biomolecules directly from their biological substrate. In this article, we describe ambient ionisation mass spectrometry techniques for the in situ analysis of intact proteins. As a broad approach, the analysis of intact proteins offers unique advantages for the determination of primary sequence variations and posttranslational modifications, as well as interrogation of tertiary and quaternary structure and protein‐protein/ligand interactions. In situ analysis of intact proteins offers the potential to couple these advantages with information relating to their biological environment, for example, their spatial distributions within healthy and diseased tissues. Here, we describe the techniques most commonly applied to in situ protein analysis (liquid extraction surface analysis, continuous flow liquid microjunction surface sampling, nano desorption electrospray ionisation, and desorption electrospray ionisation), their advantages, and limitations and describe their applications to date. We also discuss the incorporation of ion mobility spectrometry techniques (high field asymmetric waveform ion mobility spectrometry and travelling wave ion mobility spectrometry) into ambient workflows. Finally, future directions for the field are discussed.  相似文献   

8.
Elijah N.MCCOOL  孙良亮 《色谱》2019,37(8):878-886
自顶向下蛋白质组学的一个重要难题是缺乏与质谱可以在线连用并且可以提供高效蛋白质分离的液相分离技术。毛细管区带电泳与纳升反相色谱都可以与质谱在线连用,并且在复杂蛋白质样品分析方面也都有了显著的提升。在这里,我们首次比较了先进的纳升反相色谱-串联质谱与毛细管区带电泳-串联质谱平台用于自顶向下蛋白质组学分析。相对于纳升反相色谱-质谱而言,毛细管区带电泳-质谱可以将标准蛋白质样品的消耗量降低10倍,而且保持与纳升反相色谱-质谱相当的蛋白质信号强度。有意思的是,与毛细管区带电泳-质谱相比,纳升反相色谱-质谱可以获得更高的蛋白质分子的气相价态。这个现象可能是由于反相流动相中的高浓度乙腈使得蛋白质变性的更加充分。从1微克的大肠杆菌蛋白质样品中,毛细管区带电泳-串联质谱可以鉴定到159个蛋白质和513个蛋白质变体,而纳升反相色谱-串联质谱仅鉴定到105个蛋白质和277个蛋白质变体。当将大肠杆菌蛋白质的上样量提高到8微克时,纳升反相色谱-串联质谱可以鉴定到245个蛋白质和1004个蛋白质变体。由于纳升反相色谱-串联质谱具有比毛细管区带电泳-串联质谱更高的上样量与更宽的分离窗口,当蛋白质样品量不受限制时,纳升反相色谱-串联质谱具有明显的优势。但是,在痕量样品分析方面,毛细管区带电泳-串联质谱具有更大的潜力。  相似文献   

9.
Nowadays, mass spectrometry plays an important role in structural biology. At one end it can be used to investigate intact protein complexes, providing details about the complex composition, topology, stability, and dynamics, whereas at the other end the protein’s identity and possible modifications can be visualized using proteomics approaches. Combining all this information allows the generation of detailed models for functional biological assemblies. Here, a perspective on the application of native mass spectrometry in structural biology is presented. The potential of this technique and some important current limitations are discussed. This includes issues regarding the quality/homogeneity of the sample, the dissociation efficiency of protein complexes during tandem mass spectrometric analysis, and some boundaries of ion mobility mass spectrometry.  相似文献   

10.
A liquid chromatography-mass spectrometry (LC-MS)-based approach for characterizing the degree of nitration and oxidation of intact calmodulin (CaM) has been used to resolve ~250 CaM oxiforms using only 500 ng of protein. The analysis was based on high-resolution data of the intact CaM isoforms obtained by Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS) coupled with an on-line reversed-phase LC separation. Tentative identifications of post-translational modifications (PTMs), such as oxidation or nitration, have been assigned by matching observed protein mass to a database containing all theoretically predicted oxidation products of CaM and verified through a combination of tryptic peptide information (generated from bottom-up analyses) and on-line collisionally induced dissociation (CID) tandem mass spectrometry (MS/MS) at the intact protein level. The reduction in abundance and diversity of oxidatively modified CaM (i.e., nitrated tyrosines and oxidized methionines) induced by macrophage activation has been explored and semiquantified for different oxidation degrees (i.e., no oxidation, moderate, and high oxidation). This work demonstrates the power of the top-down approach to identify and quantify hundreds of combinations of PTMs for single protein target such as CaM and implicate competing repair and peptidase activities to modulate cellular metabolism in response to oxidative stress.  相似文献   

11.
Potential agents for biological attacks include both microorganisms and toxins. In mass spectrometry (MS), rapid identification of potential bioagents is achieved by detecting the masses of unique biomarkers, correlated to each agent. Currently, proteins are the most reliable biomarkers for detection and characterization of both microorganisms and toxins, and MS-based proteomics is particularly well suited for biodefense applications. Confident identification of an organism can be achieved by top-down proteomics following identification of individual protein biomarkers from their tandem mass spectra. In bottom-up proteomics, rapid digestion of intact protein biomarkers is again followed by MS/MS to provide unambiguous bioagent identification and characterization. Bioinformatics obviates the need for culturing and rigorous control of experimental variables to create and use MS fingerprint libraries for various classes of bioweapons. For specific applications, MS methods, instruments and algorithms have also been developed for identification based on biomarkers other than proteins and peptides.  相似文献   

12.
The structure of an intact glycosaminoglycan (GAG) chain of the bikunin proteoglycan (PG) was analyzed using a combined top-down and bottom-up sequencing strategy. PGs are proteins with one or more linear, high-molecular weight, sulfated GAG polysaccharides O-linked to serine or threonine residues. GAGs are often responsible for the biological functions of PGs, and subtle variations in the GAG structure have pronounced physiological effects. Bikunin is a serine protease inhibitor found in human amniotic fluid, plasma, and urine. Bikunin is posttranslationally modified with a chondroitin sulfate (CS) chain, O-linked to a serine residue of the core protein. Recent studies have shown that the CS chain of bikunin plays an important role in the physiological and pathological functions of this PG. While no PG or GAG has yet been sequenced, bikunin, the least complex PG, offers a compelling target. Electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry (ESI FTICR-MS) permitted the identification of several major components in the GAG mixture having molecular masses in a range of 5505-7102 Da. This is the first report of a mass spectrum of an intact GAG component of a PG. FTICR-MS analysis of a size-uniform fraction of bikunin GAG mixture obtained by preparative polyacrylamide gel electrophoresis, allowed the determination of chain length and number of sulfo groups in the intact GAGs.  相似文献   

13.
It is established that noncovalent complexes can be maintained both during and after electrospray and that assemblies of increasing size and complexity often lead to broadened peaks in mass spectra. This broadening arises from the tendency of large protein assemblies to form adducts with salts and is compounded when complexes are isolated directly from cells, without the full protein complement. To investigate the origins of this broadening in mass spectral peaks and to develop the optimal method for analyzing mass spectra of large protein complexes, we have carried out a systematic investigation of a series of noncovalent complexes representing a range of different sizes and architectures. We establish a positive correlation between peak width and the increased mass observed and show that this correlation is independent of the instrumental parameters employed. Using this relationship we show that we can determine masses of both 30S subunits and intact 2.3 MDa 70S ribosomes from Thermus thermophilus. The masses of both particles are consistent with multiple populations of ribosomes. To identify these various populations we combine simulated mass spectra of ribosomes, with and without the full protein complement, and estimate the extent of adducts from our study of known complexes. The results allow us to determine the contribution of the different subpopulations to the overall mass spectrum. We confirm the existence of these subpopulations using tandem mass spectrometry of intact 30S subunits. Overall, the results show that, rather than uniform particles, gas-phase ribosomes consist of a number of discrete populations. More generally, the results establish a rigorous procedure for accurate mass measurement and spectral analysis of heterogeneous macromolecular assemblies.  相似文献   

14.
Characterizing intact multiprotein complexes in terms of both their mass and size by ion mobility-mass spectrometry is becoming an increasingly important tool for structural biology. Furthermore, the charge states of intact protein complexes can dramatically influence the information content of gas-phase measurements performed. Specifically, protein complex charge state has a demonstrated influence upon the conformation, mass resolution, ion mobility resolution, and dissociation properties of protein assemblies upon collisional activation. Here we present the first comparison of charge-reduced multiprotein complexes generated by solution additives and gas-phase ion-neutral reaction chemistry. While the charge reduction mechanism for both methods is undoubtedly similar, significant gas-phase activation of the complex is required to reduce the charge of the assemblies generated using the solution additive strategy employed here. This activation step can act to unfold intact protein complexes, making the data difficult to correlate with solution-phase structures and topologies. We use ion mobility-mass spectrometry to chart such conformational effects for a range of multi-protein complexes, and demonstrate that approaches to reduce charge based on ion-neutral reaction chemistry in the gas-phase consistently produce protein assemblies having compact, ‘native-like’ geometries while the same molecules added in solution generate significantly unfolded gas-phase complexes having identical charge states.  相似文献   

15.
Proteins and the complexes they form with their ligands are the players of cellular action. Their function is directly linked with their structure making the structural analysis of protein‐ligand complexes essential. Classical techniques of structural biology include X‐ray crystallography, nuclear magnetic resonance spectroscopy and recently distinguished cryo‐electron microscopy. However, protein‐ligand complexes are often dynamic and heterogeneous and consequently challenging for these techniques. Alternative approaches are therefore needed and gained importance during the last decades. One alternative is native mass spectrometry, which is the analysis of intact protein complexes in the gas phase. To achieve this, sample preparation and instrument conditions have to be optimised. Native mass spectrometry then reveals stoichiometry, protein interactions and topology of protein assemblies. Advanced techniques such as ion mobility and high‐resolution mass spectrometry further add to the range of applications and deliver information on shape and microheterogeneity of the complexes. In this tutorial, we explain the basics of native mass spectrometry including sample requirements, instrument modifications and interpretation of native mass spectra. We further discuss the developments of native mass spectrometry and provide example spectra and applications.  相似文献   

16.
Bioanalysis assays that reliably quantify biotherapeutics and biomarkers in biological samples play pivotal roles in drug discovery and development. Liquid chromatography coupled with mass spectrometry (LC–MS), owing to its superior specificity, faster method development and multiplex capability, has evolved as one of the most important platforms for bioanalysis of biotherapeutics, particularly new scaffolds such as half-life extension platforms for proteins and peptides, as well as antibody drug conjugates. Intact LC–MS analysis is orthogonal to bottom-up surrogate peptide approach by providing whole molecule quantitation and high-level sequence and structure information. Here we review the latest development in LC–MS bioanalysis of intact proteins and peptides by summarizing recent publications and discussing the important topics such as the comparison between top-down intact analysis and bottom-up surrogate peptide approach, as well as simultaneous quantitation and catabolite identification. Key bioanalytical issues around intact protein bioanalysis such as sensitivity, data processing strategies, specificity, sample preparation and LC condition are elaborated. For peptides, topics including quantitation of intact peptide vs. digested surrogate peptide, metabolites, sensitivity, LC condition, assay performance, internal standard and sample preparation are discussed.  相似文献   

17.
Plasma protein profiling with mass spectrometry is currently being evaluated as a diagnostic tool for cancer and other diseases. These experiments consist of three steps: plasma protein fractionation, analysis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), and comparisons of the MALDI profiles to develop diagnostic fingerprints using bioinformatic techniques. While preliminary results appear promising in small sample groups, the method is limited by the sensitivity of MALDI-MS for intact proteins, the limited mass range of MALDI-MS, and difficulties associated with isolating individual proteins for identification to validate the diagnostic fingerprint. Here we present an alternative and improved method directed toward diagnostic protein discovery, which incorporates proteolytic peptide profiling, bioinformatic targeting of ion signals, and MALDI tandem mass spectrometry (MS/MS) peptide sequencing, rather than fingerprinting. Pancreatic cancer patients, pancreatitis patients, and controls are used as the model system. Profiling peptides after enzymatic digestion improves sensitivity and extends the accessible protein molecular weight range when compared to intact protein profiling. The first step is to extract and fractionate the proteins from plasma. Each fraction is digested with trypsin and subsequently analyzed by MALDI-MS. Rather than using bioinformatic analysis as a pattern-matching technique, peptides are targeted based on the disease to control peak intensity ratios measured in the averages of all mass spectra in each group and t-tests of the intensity of each individual peak. The targeted peptide ion signals are subsequently identified using MALDI-MS/MS in quadrupole-TOF and tandem-TOF instruments. This study found not only the proteins targeted and identified by a previous protein profiling experiment, but also detected additional proteins. These initial results are consistent with the known biology of pancreatic cancer or pancreatitis, but are not specific to those diseases.  相似文献   

18.
Protein isoprenylation, an important post-translational modification with a lipid, involves the selective attachment of two types of isoprenoids, farnesyl (C15) and geranylgeranyl (C20). The isoprenoid is linked via a thioether bond to the C-terminal cysteine residue of a variety of cellular proteins, including the heterotrimeric G protein gamma-subunits. One member of the G protein family, transducin (Talpha/Tbetagamma), plays a central role in visual transduction, and the structure-function relationship has been extensively studied with purified proteins, predominantly with bovine transducin that was shown to be farnesylated at the C-terminal cysteine residue of the gamma-subunit (Tgamma). We report here the structure of the C-terminal modification of mouse Tgamma, which has not yet been elucidated owing to the low amount of protein that can be isolated from the mouse retina. Electrospray ionization mass spectrometry (ESI-MS) of the high-performance liquid chromatography (HPLC)-purified Tgamma was in good agreement with the calculated mass of the farnesylated and methylated form of mouse Tgamma (Pro1-Cys70). A 'top-down' analysis of intact Tgamma using an ESI hybrid quadrupole time-of-flight (TOF) tandem mass spectrometer provided isoprenyl-specific ions that were observed to produce ions separated by 204 Da from the conventional (unmodified) precursor ion or the C-terminal sequence ions. Such characteristic fragmentation on an isoprenoid observed in top-down analysis could be useful in general for determining the type of isoprenylation as well as probing the site of modification in the protein sequence.  相似文献   

19.
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells with relevance to treatment of numerous medical conditions. However, a global understanding of the role of the hESC proteome in maintaining pluripotency or triggering differentiation is still largely lacking. The emergence of top-down proteomics has facilitated the identification and characterization of intact protein forms that are not readily apparent in bottom-up studies. Combined with metabolic labeling techniques such as stable isotope labeling by amino acids in cell culture (SILAC), quantitative comparison of intact protein expression under differing experimental conditions is possible. Herein, quantitative top-down proteomics of hESCs is demonstrated using the SILAC method and nano-flow reverse phase chromatography directly coupled to a linear-ion-trap Fourier transform ion cyclotron resonance mass spectrometer (nLC-LTQ-FT-ICR-MS). In this study, which to the best of our knowledge represents the first top-down analysis of hESCs, we have confidently identified 11 proteins by accurate intact mass, MS/MS, and amino acid counting facilitated by SILAC labeling. Although quantification is challenging due to the incorporation of multiple labeled amino acids (i.e., lysine and arginine) and arginine to proline conversion, we are able to quantitatively account for these phenomena using a mathematical model.  相似文献   

20.
The conventional protocol for protein identification by electrospray ionization mass spectrometry (MS) is based on enzymatic digestion which renders peptides to be analyzed by liquid chromatography-MS and collision-induced dissociation (CID) multistage MS, in the so-called bottom-up approach. Though this method has brought a significant progress to the field, many limitations, among which, the low throughput and impossibility to characterize in detail posttranslational modifications in terms of site(s) and structure, were reported. Therefore, the research is presently focused on the development of procedures for efficient top-down fragmentation of intact protein ions. In this context, we developed here an approach combining fully automated chip-based-nanoelectrospray ionisation (nanoESI), performed on a NanoMate robot, with electron transfer dissociation (ETD) for peptide and top-down protein sequencing and identification. This advanced analytical platform, integrating robotics, microfluidics technology, ETD and alternate ETD/CID, was tested and found ideally suitable for structural investigation of peptides and modified/functionalized peptides as well as for top-down analysis of medium size proteins by tandem MS experiments of significantly increased throughput and sensitivity. The obtained results indicate that NanoMate-ETD and ETD/CID may represent a viable alternative to the current MS strategies, with potential to develop into a method of routine use for high throughput top-down proteomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号