首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
电喷雾质谱的非共价键蛋白质复合物研究   总被引:1,自引:0,他引:1  
电喷雾质谱(ESI-MS)已经成为检测和研究生物分子弱相互作用,即非共价键作用的一个重要分析手段.ESI-MS除了具有快速、灵敏、专属的特点以外,还有能够直接得出复合物的分子量和化学计量比的优点.本文通过蛋白质与蛋白质、配体、金属离子的非共价复合物的例子阐述了ESI-MS技术的主要特性,综述了ESI-MS在非共价键蛋白质复合物方面的早期和近期应用研究成果.引用文献34篇.  相似文献   

2.
Numerous protein–polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein–ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP–tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP–tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5·EgCG complexes are maintained intact in the gas phase.   相似文献   

3.
Over the years, protein interactions have been studied by many techniques to obtain a wide breadth of information. The large size and complexity of the macromolecules have caused difficulties for studying them by some techniques. In some cases, peptides, smaller and less complex biomolecules, have been found to be suitable models to mimic the interactions of entire proteins. The study of peptide-metal interaction, in particular, has proven to be fruitful to researchers across the science fields. One technique in particular, electrospray ionization-mass spectrometry (ESI-MS), has been shown to provide a great deal of information to these studies. The speed, sensitivity, and selectivity of MS, along with the information that can be interpreted from MS-based experiments, has driven this technique to the forefront for understanding the nature of peptide-metal complexes. MS has allowed researchers to identify the stoichiometry of peptide-metal complexes or even mixtures of complexes. The specific amino acids in which the metal cations are bound and the degree of association in these complexes can also be determined by MS experiments. The following review discusses the ESI process and how it is ideal for studying noncovalent interactions between peptides and metals. An investigation of the qualitative and quantitative information that has been determined by ESI-MS follows for readers to realize the versatility of this technique and the diversity of information that can be obtained by a variety of related methods.  相似文献   

4.
Electrospray ionization (ESI) is a soft ionization technique that is able to transfer intact ions, as well as solution phase non-covalent complexes into the gas phase. With small molecules that have a high tendency to form hydrogen bonds, the observation of non-covalent complexes by ESI-MS can be the result of a non-specific interaction, due to the nature of the electrospray process. Special precautions and additional steps should be performed to identify the origin of the complexes observed with ESI-MS, and we have utilized solution phase hydrogen/deuterium (H/D) exchange as a method to determine the specificity of the complexes. By comparing the average number of exchanges for the monomer subunits to the average number of exchanges for the complex, one can distinguish if a specific complex is formed in solution. In this paper we have investigated non-covalent complexes of some common chemotherapy agents: paclitaxel, doxorubicin, and etoposide by ESI-MS. By using the solution phase H/D exchange, we were able to identify several specific drug-drug complexes. Thus, solution phase H/D exchange combined with ESI-MS provides for a convenient method in ascertaining the specificity of non-covalent complexes as being formed in solution or in vacuo.  相似文献   

5.
Negative ion ESI mass spectrometry was used to study the gas-phase stability and dissociation pathways of peptide-DNA complexes. We show that bradykinin and three modified peptides containing the basic residue arginine or lysine form stable interactions with single-stranded oligonucleotides. ESI-MS/MS of complexes of T(8) with PPGFSPFRR resulted in a major dissociation pathway through cleavage of the peptide covalent bond. The stability of the complex is due to electrostatic interaction between the negatively charged phosphate group and the basic side chain of the arginine and lysine residues as demonstrated by Vertes et al. and Woods et al. In fact, the present work establishes the role played by zwitterions on complex stabilisation. The presence of protons in nucleobase and/or amino acid contributes in reinforcing the strength of the salt bridge (SB) interaction. The zwitterionic form of the most basic of amino acid residues, arginine, is assumed to form a strong SB interaction to the negatively charged phosphate groups of DNA. This non-covalent complex is stable enough to withstand disruption of the non-covalent interaction and to first break the covalent bond. Moreover, the dependence of fragmentation patterns upon the complex charge state is explained by the fact that the net number of negative charges modulates the number of zwitterionic sites, which stabilise the complexes. Finally, the weak influence of the nucleobase is assumed by the existence of competition for proton addition between the nucleobase and the R/K side chain leading to a decrease in the stabilisation of the SB interaction.  相似文献   

6.
以缓激肽(R1P2P3G4F5S6P7F8R9)分子作为研究模型, 用电喷雾质谱研究缓激肽分子碎片片段之间的非共价相互作用, 探讨了影响气相多肽分子构象稳定的氢键作用. 合成了与缓激肽分子在位置1断裂形成的碎片一致的RPPGFS和PFR多肽序列, 与在位置2断裂形成碎片一致的RPPGF和SPFR多肽, 以及N端或者C端去掉精氨酸的相应碎片多肽. 实验结果表明, 上述两个断裂位置产生的碎片多肽分别进行反应后, 都能发生非共价作用. 在断裂方式1下, PFR多肽在去掉C端的精氨酸R后, 与其他大多数多肽不发生非共价结合, 表明PFR中的R在缓激肽气相分子的构象中发挥重要的作用. 而在断裂方式2下, 去掉N端或者C端精氨酸的多肽之间都存在非共价结合, 即C端带有丝氨酸的SPF或SPFR多肽碎片仍然可以与N端碎片发生氢键结合, 表明丝氨酸很可能处于转角的位置. 通过对碰撞诱导解离(CID)的碰撞能量分析, 发现多肽RPPGFS和PFR, 以及多肽RPPGF和SPFR之间氢键结合较强, 而同时去掉N端和C端精氨酸得到的多肽之间的氢键结合较弱. 质谱滴定法定量测得的RPPGFS和PFR的结合常数为3.53×103, 与RPPGF和SPFR的结合常数(3.16×103)相接近,它们均大于去除精氨酸的PPGF和SPF的结合常数(1.25×103). 质谱滴定实验结果进一步确认了碰撞诱导解离的分析结果, 表明缓激肽分子两端的精氨酸之间的氢键作用是气相缓激肽分子构象稳定的重要因素之一.  相似文献   

7.
It was shown in previous work that the interaction of growth factors (GFs) with adenosine triphosphate (ATP) is essential for their neuroprotective effect. Here we investigated the nature of the association of human basic fibroblast growth factor (bFGF), nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) with ATP. It was demonstrated that this interaction involves the formation of non-covalent ATP-GF complexes that are labile at low pH and that could be selectively purified and subjected to electrospray and MALDI-TOF mass spectrometry. The results obtained with these techniques indicated that the stability of the complexes is high. Main features of the procedure used here are: (1) reversed-phase purification of nucleotide-protein non-covalent complexes, (2) their detection with MALDI-TOF-MS using acid-free matrix, and/or (3) their measurement with ESI-MS using soft desolvation conditions. The methodology was successful in providing proof for the presence of various nucleotide-GF complexes. It was extended to other nucleotide-binding proteins (ribonuclease A) as well as proteins that do not exhibit nucleotide binding (lysozyme) as positive and negative control, respectively. Thus, the method demonstrated its general use for the investigation of a wide range of proteins interacting with nucleotides as long as their complexes are sufficiently stable to accommodate the experimental conditions.  相似文献   

8.
Non-covalent inclusion complexes formed between an anti-inflammatory drug, oleanolic acid (OA), and alpha-, beta- and gamma-cyclodextrins (CDs) were investigated by means of solubility studies and electrospray ionization tandem mass spectrometry (ESI-MS(n)). The order of calculated association constants (K(1 : 1)) of complexes between OA and different CDs in solution is in good agreement with the order of their relative peak intensities and the relative CID energies of the complexes under the same ESI-MS(n) conditions. These results indicate a direct correlation between the behaviors of solution- and gas-phase complexes. ESI-MS can thus be used to evaluate solution-phase non-covalent complexes successfully. The experimental results show that the most stable 1 : 1 inclusion complexes between three CDs and OA can be formed, but 2 : 1 CD-OA complexes can be formed with beta- and gamma-CDs. Multi-component complexes of alpha-CD-OA-beta-CD (1 : 1 : 1), alpha-CD-OA-gamma-CD (1 : 1 : 1) and beta-CD-OA-gamma-CD (1 : 1 : 1) were found in equimolar CD mixtures with excess OA. The formation of 2 : 1 and multi-component 1 : 1 : 1 non-covalent CD-OA complexes indicates that beta- and gamma-CD are able to form sandwich-type inclusion non-covalent complexes with OA. The above results can be partly supported by the relative sizes of OA and CD cavities by molecular modeling calculations. All the complexes allow the detection of gaseous deprotonated CD-OA complexes in the negative ion mode at high abundances. The relative stabilities of the CDs-OA inclusion complexes in the gas phase can be evaluated from the relative CID energies in the ion trap (alpha-CD-OA < beta-CD-OA < gamma-CD-OA) in the negative ion mode.  相似文献   

9.
In the past years, the potential of electrospray ionization mass spectrometry (ESI-MS) for the observation of intact weak interactions, such as non-covalent protein-ligand, protein-protein, protein-DNA complexes, has spread out. The coupling of ESI with time-of-flight (TOF) and quadrupole-time-of-flight (Q-TOF) analyzers has even enabled the detection of larger complexes with molecular weights greatly higher than 200 kDa. In this paper, we report a comparative ESI-MS study on the protein quaternary structure of native hemocyanins (Hc) from crabs living in different biotopes: a shore crab (Carcinus maenas) and two deep-sea crabs (Segonzacia mesatlantica and Bythograea thermydron). Hc is an extracellular blood protein, composed of several protein chains which can associate in large multimers. The goal of this study is to point out that the oligomerization state of native Hcs is biotope-dependent. Depending on the crab, ESI-MS analyses under non-denaturing conditions reveal different oligomeric forms present in equilibrium in solution. Molecular weights up to 2,235 kDa were measured for the associations of 30 subunits of the Bythograea thermydron Hc. Thanks to ESI-MS analyses, it could be concluded for the first time that the oligomerization state of native Hcs is dependent on the crab environment. The investigation of these different non-covalent self-assemblies is very important for the life history of crabs, since they are directly related with different oxygen binding abilities and thus, with their ability to colonize habitats with different oxygen contents.  相似文献   

10.
为探索谷胱甘肽和L型芳香性氨基酸的非共价相互作用, 将一定化学剂量比的还原型γ-谷胱甘肽分别与L型芳香性氨基酸(包括苯丙氨酸、酪氨酸和色氨酸)在室温和生理pH条件下混合后, 温育1 h, 生成非共价复合物, 并使反应完全. 电喷雾质谱测量结果揭示谷胱甘肽和L型芳香性氨基酸反应可以生成非共价复合物. 在二级串级质谱MS2测得的复合物碎片离子峰中, 除芳香性氨基酸离子峰外, 还包括谷胱甘肽及其它再次碎裂产生的b2和y2碎片离子, 进一步确认了非共价复合物的形成. 紫外光谱也证实了电喷雾质谱的实验结果. 为避免严重的离子化效率差异和质谱信号的相互抑制作用, 定量评估了谷胱甘肽和酪氨酸的相互作用, 结果显示反应物的初始浓度应该选择在5×10-5~3.00×10-4 mol/L范围内. 用质谱滴定法测定了谷胱甘肽与3个芳香性氨基酸非共价复合物的解离常数, 结果表明, 谷胱甘肽复合物的稳定性按Tyr, Trp和Phe次序依次增大.  相似文献   

11.
Electrospray ionization mass spectrometry (ESI-MS) was used to study the binding interactions of two series of ruthenium complexes, [Ru(phen) 2L] (2+) and [RuL' 2(dpqC)] (2+), to a double stranded DNA hexadecamer, and derive orders of relative binding affinity. These were shown to be in good agreement with orders of relative binding affinity derived from absorption and circular dichroism (CD) spectroscopic examination of the same systems and from DNA melting curves. However, the extent of luminescence enhancement caused by the addition of DNA to solutions of the ruthenium complexes showed little correlation with orders of binding affinity derived from ESI-MS or any of the other techniques. Overall the results provide support for the validity of using ESI-MS to investigate non-covalent interactions between metal complexes and DNA.  相似文献   

12.
利用电喷雾质谱(ESI-MS)研究了12种天然产物小分子与人类端粒G-四链体结构的非共价相互作用和识别功能, 比较了不同小分子与人类端粒G-四链体的结合强弱, 发现了一种新的识别小分子——防己诺林碱对人类端粒G-四链体有很好的结合. 通过质谱升温实验比较了小分子结合对G-四链体热稳定性的影响, 防己诺林碱的结合使G-四链体的离子的解离温度(T1/2)上升到200 ℃. 利用分子模拟对G-四链体DNA与小分子结合的模式以及稳定性进行了探讨, 给出了防己诺林碱可能的结合位点和结合模式, Autodock计算出来的结合能约为-31.5 kJ·mol-1. 同原来的平面型分子不同, 防己诺林碱是一类新型结构的分子, 为设计合成新型G-四链体识别分子提供了新的结构模型.  相似文献   

13.
The noncovalent binding of various peptide ligands to pp60src (Src) SH2 (Src homology 2) domain protein (12.9 ku) has been used as a model system for development of electrospray ionization mass spectrometry (ESI-MS) as a tool to study noncovalently bound complexes. SH2 motifs in proteins are critical in the signal transduction pathways of the tyrosine kinase growth factor receptors and recognize phosphotyrosine-containing proteins and peptides. ESI-MS with a magnetic sector instrument and array detection has been used to detect the protein-peptide complex with low-picomole sensitivity. The relative abundances of the multiply charged ions for the complex formed between Src SH2 protein and several nonphosphorylated and phosphorylated peptides have been compared. The mass spectrometry data correlate well to the measured binding constants derived from solution-based methods, indicating that the mass spectrometry-based method can be used to assess the affinity of such interactions. Solution-phase equilibrium constants may be determined by measuring the amount of bound and unbound species as a function of concentration for construction of a Scatchard graph. ESI-MS of a solution containing Src SH2 with a mixture of phosphopeptides showed the expected protein-phosphopeptide complex as the dominant species in the mass spectrum, demonstrating the method’s potential for screening mixtures from peptide libraries.  相似文献   

14.
Stable gadolinium(III) chelates are nowadays routinely used as contrast agents for magnetic resonance imaging (MRI). Their non-covalent binding to human serum albumin (HSA) has shown to improve their efficacy. Non-covalent interactions lead to complex formation that can be quantified by several techniques that are mostly tedious and time-consuming. In this study, electrospray ionization mass spectrometry (ESI-MS) was used to investigate the interaction between HSA and several gadolinium(III) complexes. The results were compared with those obtained in the liquid phase. Four gadolinium complexes were investigated: Gd-DTPA 1, Gd-C(4)Me-DTPA 2, Gd-EOB-DTPA 3, and MP-2269 4. Relaxometry studies show that complexes 1 and 2 have no significant affinity for HSA, while complexes 3 and 4 have increasing affinities for the protein. 1:1 and 1:2 complexes between HSA and MP-2269 were detected by ESI-MS for a twofold excess of the contrast agent, whereas a ligand/protein molar ratio of 4:1 was necessary to observe a 1:1 stoichiometry for Gd-EOB-DTPA, an observation that is in good agreement with the known weaker affinity of the contrast agent for the protein. At a fourfold molar excess, no supramolecular complex was observed for Gd-DTPA 1 and Gd-C(4)Me-DTPA 2; a tenfold molar excess was necessary to detect a 1:1 complex, confirming the very weak affinity of these contrast agents for HSA.  相似文献   

15.
The use of electrospray ionization mass spectrometry (ESI-MS) for studying non-covalent interactions between macromolecules and ligands is well established. ESI-MS can be a useful tool for the determination of dissociation constants between molecules in the gas phase. We validate this method by studying the binding of the catalytic domain of cellobiohydrolase I (CBH I) from Trichoderma reesei to the disaccharide inhibitor cellobiose. The method was further applied to study two newly synthesized cellobiose derivatives (m-iodobenzyl 2-deoxy-2-azido-beta-cellobioside and p-benzyloxybenzyl beta-cellobioside). In a titration experiment, peak areas of different charge states of the free enzyme and the complex were summed in order to determine the dissociation constant. For cellobiose and m-iodobenzyl 2-deoxy-2-azido-beta-cellobioside, the calculated values are in good agreement with those reported from either displacement titration or equilibrium binding experiments in solution. Due to non-specific binding, the dissociation constant of p-benzyloxybenzyl beta-cellobioside does not correspond with the solution-based value. Our results indicate the need for careful interpretation of data sets when using nanoESI to study non-covalent interactions.  相似文献   

16.
N-磷酰化多巴胺与溶菌酶相互作用的ESI-MS研究   总被引:1,自引:0,他引:1  
采用电喷雾离子肼-质谱(ESI-MS)研究了一系列结构具有可比性的N-磷酰化多巴胺与溶菌酶的非共价相互作用, 比较了磷上不同取代基对相互作用的影响. 结果表明, 磷上的烷氧取代基上烷基碳原子的个数及排列顺序对二者相互作用有较大影响; 取代基上碳链越长, 溶液中溶菌酶的构象越趋于收缩, 二者之间越容易形成带低电荷和高质核比的复合物, 且其稳定性也随着取代基的增长而增强; 当取代基碳原子数相同时, 直链取代的磷酰化多巴胺与溶菌酶形成的复合物比支链取代的底物与溶菌酶形成的复合物稳定.  相似文献   

17.
The interactions between ATP and N-(O,O-diisopropyl) phosphoryl-L-alanine (DIPP-Ala), N-(tert-butoxycarbonyl)-L-alanine (Boc-Ala), or L-alanine (Ala) were investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The non-covalent complexes between ATP and Boc-Ala or DIPP-Ala were observed, while the complex between ATP and Ala was not found in the mass spectra. The affinity of DIPP-Ala for ATP was confirmed to be stronger than that of Boc-Ala by competition experiment. Through molecular modeling calculations, it was found that the non-covalent complexes were stabilized by intermolecular hydrogen bonds, and the affinity sequence for ATP was DIPP-Ala > Boc-Ala > Ala by comparing their binding energy, ?35.407 kcal/mol, ?15.634 kcal/mol, ?6.555 kcal/mol, respectively. The results implied that a phosphoryl group was a very important functional group to provide an interaction site between amino acids and ATP, and that N-phosphoryl amino acids can be used as a good model of protein in the studies of molecular recognition of ATP.  相似文献   

18.
Phosphorylation and sulfation are two important biological modifications present in carbohydrates, proteins, and glycoproteins. Typically, sulfation and phosphorylation cause different biological responses, so differentiating these two functional groups is important for understanding structure/function relationships in proteins, carbohydrates, and metabolites. Since phosphorylated and sulfated compounds are isobaric, their discrimination is not possible in routinely utilized mass spectrometers. Thus, a novel mass spectrometric method to distinguish them has been developed. Herein, we utilize basic peptides as ion-pairing reagents to complex to phosphorylated and sulfated carbohydrates via noncovalent interactions. By performing ESI-MS/MS on the ion-pair complexes, the isobaric compounds can be distinguished. This is the first study demonstrating that ion-pairing can be used for the detection of phosphorylated compounds and the first study to use ion-pairing in conjunction with MS/MS to obtain structural information about the analytes.  相似文献   

19.
The need to develop label‐free biosensing devices that enable rapid analyses of interactions between small molecules/peptides and proteins for post‐genomic studies has increased significantly. We report a simple metal–insulator–metal (MIM) geometry for fabricating a highly sensitive detection platform for biosensing. MIM substrates consisting of an Au–PMMA–Ag nanolayer were extensively studied using both theoretical and experimental approaches. By monitoring reflectivity changes at the normal incidence angle, we observed molecular interactions as the thickness of the biolayer increased on the substrate surface. These interactions included the adsorption of various proteins (Mw=6–150 kD) and interactions between small molecules (Mw≤2 kD) and the immobilized proteins. The interaction of designed monosaccharide‐modified designed peptides with various lectins was also clearly detected. These interactions could not be detected by the conventional Au‐only substrate. Thus, the MIM approach affords a powerful label‐free biosensing device that will aid our understanding of protein interactions and recognition.  相似文献   

20.
Hydroxycinnamic acids derivatives, monomeric and oligomeric flavan-3-ols, flavonols, and dihydrocalcones are four of the major polyphenolic groups found in apples leaves and peels. A simple extraction with minimal pre-treatment and a high-performance liquid chromatography-diode array detection determination are optimized and validated, in order to identify and quantitate the polyphenolic profile of leaves and peels of four apples varieties (Gala, Topaz, Golden Delicious, and Florina). The improved chromatographic method has led to better separation of some known polyphenols in a single course, and diode-array detection has been used for the previsional identification of some polyphenolic compounds not available as standards. Because the mobile phase and the chromatographic column are compatible with a mass spectrometer, this method could investigate the unknown flavanols, flavonols, hydrocinnamic acid derivatives, and chalcone-related compounds found in apple leaves and peel extracts analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号