首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GSTP1 has been considered to be a marker for malignancy in many tissues. However, the existing GST fluorescent probes are unfavorable for in vivo imaging because of the limited emission wavelength or insufficient fluorescence enhancement (six‐fold). The limited fluorescence enhancement of GST fluorescent probes is mainly ascribed to the high background signals resulting from the spontaneous reaction between GSH and the probes. In this work, a highly specific GST probe with NIR emission has been successfully developed through optimization of the essential unit of the probe to repress the spontaneous reaction. The novel GST probe exhibits over 100‐fold fluorescence enhancement upon incubation with GSTP1/GSH and high selectivity over other potential interference. In addition, the probe has been proved to be capable of tracking endogenous GST in A549 cells. Finally, the in vivo imaging results demonstrate that the probe can be used for effective imaging of endogenous GST activity in subcutaneous tumor mouse with high contrast.  相似文献   

2.
Near infrared (NIR) emitting semiconductor quantum dots can be excellent fluorescent nanoprobes, but the poor biodegradability and potential toxicity limits their application. The authors describe a fluorescent system composed of graphene quantum dots (GQDs) as NIR emitters, and novel MnO2 nanoflowers as the fluorescence quenchers. The system is shown to be an activatable and biodegradable fluorescent nanoprobe for the “turn-on” detection of intracellular glutathione (GSH). The MnO2-GQDs nanoprobe is obtained by adsorbing GQDs onto the surface of MnO2 nanoflowers through electrostatic interaction. This results in the quenching of the NIR fluorescence of the GQDs. In the presence of GSH, the MnO2-GQDs nanoprobe is degraded and releases Mn2+ and free GQDs, respectively. This gives rise to increased fluorescence. The nanoprobe displays high sensitivity to GSH and with a 2.8 μM detection limit. It integrates the advantages of NIR fluorescence and biodegradability, selectivity, biocompatibility and membrane permeability. All this makes it a promising fluorescent nanoprobe for GSH and for cellular imaging of GSH as shown here for the case of MCF-7 cancer cells.
Graphical abstract A biodegradable NIR fluorescence nanoprobe (MnO2-GQDs) for the “turn-on” detection of GSH in living cell was established, with the NIR GQD as the fluorescence reporter and the MnO2 nanoflower as the fluorescence quencher.
  相似文献   

3.
Traumatic brain injury (TBI) is one of the most dangerous acute diseases resulting in high morbidity and mortality. Current methods remain limited with respect to early diagnosis and real‐time feedback on the pathological process. Herein, a targeted activatable fluorescent nanoprobe (V&A@Ag2S) in the second near‐infrared window (NIR‐II) is presented for in vivo optical imaging of TBI. Initially, the fluorescence of V&A@Ag2S is turned off owing to energy transfer from Ag2S to the A1094 chromophore. Upon intravenous injection, V&A@Ag2S quickly accumulates in the inflamed vascular endothelium of TBI based on VCAM1‐mediated endocytosis, after which the nanoprobe achieves rapid recovery of the NIR‐II fluorescence of Ag2S quantum dots (QDs) owing to the bleaching of A1094 by the prodromal biomarker of TBI, peroxynitrite (ONOO?). The nanoprobe offers high specificity, rapid response, and high sensitivity toward ONOO?, providing a convenient approach for in vivo early real‐time assessment of TBI.  相似文献   

4.
Photoinduced electron transfer (PET)-based molecular probes have been successfully used for the intracellular imaging of the pH of acidic organelles. In this study, we describe the synthesis and characterization of a novel PET-based pH nanoprobe and its biological application for the signaling of acidic organelles in mammalian cells. A fluorescent ligand sensitive to pH via the PET mechanism that incorporates a thiolated moiety was synthesized and used to stabilize gold nanoparticles (2.4?±?0.6 nm), yielding a PET-based nanoprobe. The PET nanoprobe was unambiguously characterized by transmission electron microscopy, proton nuclear magnetic resonance, Fourier transform infrared, ultraviolet-visible absorption, and steady-state/time-resolved fluorescence spectroscopies which confirmed the functionalization of the gold nanoparticles with the PET-based ligand. Following a classic PET behavior, the fluorescence emission of the PET-based nanoprobe was quenched in alkaline conditions and enhanced in an acidic environment. The PET-based nanoprobe was used for the intracellular imaging of acidic environments within Chinese hamster ovary cells by confocal laser scanning microscopy. The internalization of the nanoparticles by the cells was confirmed by confocal fluorescence images and also by recording the fluorescence emission spectra of the intracellular PET-based nanoprobe from within the cells. Co-localization experiments using a marker of acidic organelles, LysoTracker Red DND-99, and a marker of autophagosomes, GFP-LC3, confirm that the PET-based nanoprobe acts as marker of acidic organelles and autophagosomes within mammalian cells.
Figure
A PET based ligand has been used to functionalize gold nanoparticles to develop a pH sensitive nanoprobe. The fluorescence of the nanoprobe, following the PET mechanism, is enhanced in acidic environments and quenched at neutral pH. A combination of spectroscopy and confocal fluorescence microscopy is used for confirmation of the cellular uptake of the nanoprobe by Chinese hamster ovary cells. The PET-based nanoprobe has been used as a marker of acidic organelles and autophagosomes within the CHO cells  相似文献   

5.
A novel bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) has been developed. Fluorescence quenching of the QDs by 4AT was observed. The functionalized QDs-4AT nanoprobe allowed a highly sensitive determination of bromide ion via analyte-induced change in the photoluminescence (fluorescence recovery) of the modified QDs. A detection limit of 0.6 nM of bromide ion was obtained, while the interfering effect of other inorganic cations and anions was investigated to examine the selectivity of the nanoprobe. The linear range was between 0.01 and 0.13 μM. Combined fluorescence lifetime and electron paramagnetic resonance measurements confirmed electron transfer processes between bromide ion and QDs-4AT.  相似文献   

6.
The fluorescent and quantum yield (QY) of graphene quantum dots has been improved in recent years by doped atoms, which have good application prospects in fluorescence sensors and biological imaging. Here, a one-step hydrothermal synthesis method was used to synthesize manganese ions bonded with boron and nitrogen-doped graphene quantum dots (Mn-BN-GQDs). Compared with the boron and nitrogen co-doping graphene quantum dots (BN-GQDs), the fluorescence properties and quantum yield of Mn-BN-GQDs are significantly improved. Meanwhile, Mn-BN-GQDs exhibit low toxicity and good fluorescence imaging in living cells and has high selectivity to Fe3+ ions. Therefore, this experiment design Mn-BN-GQDs as a fluorescence sensor to detect Fe3+ ions, providing strong evidence for the advanced high sensitivity, selectivity and wide detection range of the Mn-BN-GQDs as a fluorescence sensor. These results indicate a dual linear relationship with good linear relationships in the 10–100 μM and 100–800 μM ranges, and limit of detection are 0.78 μM and 9.08 μM, respectively. Cellular imaging results demonstrate that Mn-BN-GQDs can be used as fluorescence sensors in biological imaging. Mn-BN-GQDs can be used for fluorescence sensing in biological imaging in combination with low toxicity, QY and quantum dot lifetime.  相似文献   

7.
A novel nanoprobe based on S,O-doped carbon nitride quantum dots (S,O-CNQDs) was designed and synthesized. The as-prepared S,O-CNQDs exhibits good biocompatibility and strong fluorescence at excitation 360 nm. It is found that folic acid (FA) could efficiently quench the fluorescence of S,O-CNQDs. The obtained S,O-CNQDs is capable of acting as a sensitive and selective probe for FA detection in the range 5.0–83.3 μM with a detection limit of 90 nM. The as-prepared probe has been successfully utilized for the detection of FA in various real samples with satisfactory recoveries (98.8–107 %) and small relative standard deviation (<5%). The reaction mechanism between S,O-CNQDs and FA has been discussed. In addition, FA-S,O-CNQDs formed through a classical cross-linking reaction between FA and S,O-CNQDs easily accesses and penetrates into HepG2 cells with high folate receptors expression. FA-S,O-CNQDs with low cytotoxicity and good biocompatibility shows great potential in FA detection and targeted imaging of cancer cells.  相似文献   

8.
Hao  Chenxia  Liu  Shaopu  Liang  Wanjun  Li  Dan  Wang  Linlin  He  Youqiu 《Mikrochimica acta》2015,182(11):2009-2017

We report on a simple, sensitive and regenerable fluorescent nanoprobe for Zn(II) ion. It is based on the use of glutathione capped CdTe quantum dots (GSH-CdTe Q-dots). The bright fluorescence of these Q-dots is quenched on addition of diethylenetriaminepentaacetic acid (DTPA) due to the binding of DTPA to GSH. If, however, Zn(II) is added, it will bind DTPA and detach it from the surface of the Q-dots, this resulting in the fluorescence recovery. Under optimum conditions, the intensity of the restored fluorescence is proportional to the concentration of Zn(II) in the 0.48 to 90 μmol · L−1 range, with a limit of detection of 0.14 μmol · L−1. The nanoprobe was applied to the determination of Zn(II) in spiked tap water and river water and gave satisfactory results. The findings were also applied to design a molecular logic gate where DTPA acts as the first input to the system by quenching the fluorescence of the GSH-CdTe Q-dots. Zn(II) acts as the second input and causes the detachment of DTPA from the Q-dots and a restoration of fluorescence. This system therefore represents a new IMP (IMPLICATION) logic gate.

We describe a fluorescent nanoprobe for Zn(II) based on quantum dots, and its use in an IMP molecular logic gate. The nanoprobe was successfully applied to the determination of Zn(II) in spiked tap water and river water.

  相似文献   

9.
A novel interfacial route has been developed for the synthesis of a bright‐red‐emitting new subnanocluster, Au23, by the core etching of a widely explored and more stable cluster, Au25SG18 (in which SG is glutathione thiolate). A slight modification of this procedure results in the formation of two other known subnanoclusters, Au22 and Au33. Whereas Au22 and Au23 are water soluble and brightly fluorescent with quantum yields of 2.5 and 1.3 %, respectively, Au33 is organic soluble and less fluorescent, with a quantum yield of 0.1 %. Au23 exhibits quenching of fluorescence selectively in the presence of Cu2+ ions and it can therefore be used as a metal‐ion sensor. Aqueous‐ to organic‐phase transfer of Au23 has been carried out with fluorescence enhancement. Solvent dependency on the fluorescence of Au23 before and after phase transfer has been studied extensively and the quantum yield of the cluster varies with the solvent used. The temperature response of Au23 emission has been demonstrated. The inherent fluorescence of Au23 was used for imaging human hepatoma cells by employing the avidin–biotin interaction.  相似文献   

10.
A novel assay was developed for the simultaneous monitoring of quantum dots and their assembly and disassembly with PreScission protease using capillary electrophoresis with fluorescence detection. Quantum dots and PreScission protease were injected into a capillary sequentially, then mixed and assembled via a thioether bond upon coupling to glutathione S‐transferase tag inside the capillary. The in‐capillary assembly was influenced by the molar ratio and the time interval of injection. Furthermore, the simultaneous monitoring of quantum dots and their assembly with PreScission protease and glutathione induced disassembly was achieved by adjusting the sampling sequence and the time interval of injection. More importantly, the in‐capillary assay could be also applied to the online detection of glutathione.  相似文献   

11.
Traumatic brain injury (TBI) is one of the most dangerous acute diseases resulting in high morbidity and mortality. Current methods remain limited with respect to early diagnosis and real-time feedback on the pathological process. Herein, a targeted activatable fluorescent nanoprobe (V&A@Ag2S) in the second near-infrared window (NIR-II) is presented for in vivo optical imaging of TBI. Initially, the fluorescence of V&A@Ag2S is turned off owing to energy transfer from Ag2S to the A1094 chromophore. Upon intravenous injection, V&A@Ag2S quickly accumulates in the inflamed vascular endothelium of TBI based on VCAM1-mediated endocytosis, after which the nanoprobe achieves rapid recovery of the NIR-II fluorescence of Ag2S quantum dots (QDs) owing to the bleaching of A1094 by the prodromal biomarker of TBI, peroxynitrite (ONOO). The nanoprobe offers high specificity, rapid response, and high sensitivity toward ONOO, providing a convenient approach for in vivo early real-time assessment of TBI.  相似文献   

12.
Heteroatom doping is an effective way to adjust the fluorescent properties of carbon quantum dots. However, selenium‐doped carbon dots have rarely been reported, even though selenium has unique chemical properties such as redox‐responsive properties owing to its special electronegativity. Herein, a facile and high‐output strategy to fabricate selenium‐doped carbon quantum dots (Se‐CQDs) with green fluorescence (quantum yield 7.6 %) is developed through the hydrothermal treatment of selenocystine under mild conditions. Selenium heteroatoms endow the Se‐CQDs with redox‐dependent reversible fluorescence. Furthermore, free radicals such as .OH can be effectively scavenged by the Se‐CQDs. Once Se‐CQDs are internalized into cells, harmful high levels of reactive oxygen species (ROS) in the cells are decreased. This property makes the Se‐CQDs capable of protecting biosystems from oxidative stress.  相似文献   

13.
A simple procedure for transferring PbS and PbSe quantum dots into water is presented, along with characterization of the resulting water-soluble quantum dots. The external surface of the water-soluble quantum dots include carboxylic groups, which will allow target-specific labeling of cells. As a first example, near-infrared fluorescence imaging of human colon cancer cells is demonstrated using these water-soluble near-infrared fluorophores.  相似文献   

14.
The present work is aimed to synthesize CdTe/ZnSe core/shell quantum dots (QDs) in an easy way and to explore the possibilities of its application in in vitro imaging of chicken tissue and embryo. The QDs were prepared using microwave irradiation with different temperatures, which is a very easy and less time‐consuming method. Subsequently, these QDs were characterized by spectrofluorimetry, Transmission Electron Microscopy, X‐ray fluorescence analysis and Dynamic Light Scattering measurement. A blueshifting of the emission was found when ZnSe was deposited on CdTe QDs. The QDs showed its fluorescence emission quantum yields up to 25%. They were applied into chicken embryos and breast muscle tissues to study their efficiency in in vitro imaging. All the QDs of different color were able to visualize in in vitro imaging. The highest fluorescence intensity was detected in the case of red QDs prepared at 100°C. The green and red QDs were possible to detect up to the depth of 3 and 4 mm of the tissue, respectively.  相似文献   

15.
Here we report the development of fluorogenic substrates for glutathione S-transferase (GST), a multigene-family enzyme mainly involved in detoxification of endogenous and exogenous compounds, including drug metabolism. GST is often overexpressed in a variety of malignancies and is involved in the development of resistance to various anticancer drugs. Despite the medical significance of this enzyme, no practical fluorogenic substrates for fluorescence imaging of GST activity or for high-throughput screening of GST inhibitors are yet available. So, we set out to develop new fluorogenic substrates for GST. In preliminary studies, we found that 3,4-dinitrobenzanilide (NNBA) is a specific substrate for GST and established the mechanisms of its glutathionylation and denitration. Using these results as a basis for off/on control of fluorescence, we designed and synthesized new fluorogenic substrates, DNAFs, and a cell membrane-permeable variant, DNAT-Me. These fluorogenic substrates provide a dramatic fluorescence increase upon GST-catalyzed glutathionylation and have excellent kinetic parameters for the present purpose. We were able to detect nuclear localization of GSH/GST activity in HuCCT1 cell lines with the use of DNAT-Me. These results indicate that the newly developed fluorogenic substrates should be useful not only for high-throughput GST-inhibitor screening but also for studies on the mechanisms of drug resistance in cancer cells.  相似文献   

16.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co‐doped carbon dots (F,N‐doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N‐doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue‐shift of the fluorescence emission from 586 nm to 550 nm. F,N‐doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N‐doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure‐triggered aggregation‐induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high‐pressure conditions and enhances their anti‐photobleaching.  相似文献   

17.
An activatable nanoprobe for imaging breast cancer metastases through near infrared‐I (NIR‐I)/NIR‐II fluorescence imaging and multispectral optoacoustic tomography (MSOT) imaging was designed. With a dihydroxanthene moiety serving as the electron donor, quinolinium as the electron acceptor and nitrobenzyloxydiphenylamino as the recognition element, the probe can specifically respond to nitroreductase and transform into an activated D‐π‐A structure with a NIR emission band extending beyond 900 nm. The activated nanoprobe exhibits NIR emission enhanced by aggregation‐induced emission (AIE) and produces strong optoacoustic signal. The nanoprobe was used to detect and image metastases from the orthotopic breast tumors to lymph nodes and then to lung in two breast cancer mouse models. Moreover, the nanoprobe can monitor the treatment efficacy during chemotherapeutic course through fluorescence and MSOT imaging.  相似文献   

18.
Carbon dots (Cdots) are an important probe for imaging and sensing applications because of their fluorescence property, good biocompatibility, and low toxicity. However, complex procedures and strong acid treatment are often required and Cdots suffer from low photoluminescence (PL) emission. Herein, a facile and general strategy using carbonization of precursors and then extraction with solvents is proposed for the preparation of nitrogen‐doped Cdots (N‐Cdots) with 3‐(3,4‐dihydroxyphenyl)‐L ‐alanine (L ‐DOPA), L ‐histidine, and L ‐arginine as precursor models. After they are heated, the precursors become carbonized. Nitrogen‐doped Cdots are subsequently extracted into N,N′‐dimethylformamide (DMF) from the carbogenic solid. A core–shell structure of Cdots with a carbon core and the oxygen‐containing shell was observed. Nitrogen has different forms in N‐Cdots and oxidized N‐Cdots. The doped nitrogen and low oxidation level in N‐Cdots improve their emission significantly. The N‐Cdots show an emission with a nitrogen‐content‐dependent intensity and Cdot‐size‐dependent emission‐peak wavelength. Imaging of HeLa cells, a human cervical cancer cell line, and HepG2 cells, a human hepatocellular liver carcinoma line, was observed with high resolution using N‐Cdots as a probe and validates their use in imaging applications and their multicolor property in the living cell system.  相似文献   

19.
The effect of one and two monolayers of ZnS shells on the photostability of CdTe quantum dots (QDs) in aqueous and nonaqueous media has been studied by monitoring the fluorescence behavior of the QDs under ensemble and single‐molecule conditions. ZnS capping of the CdTe QDs leads to significant enhancement of the fluorescence brightness of these QDs. Considerable enhancement of the photostability of the shell‐protected QDs, including the suppression of photoactivation, is also observed. Fluorescence correlation spectroscopy measurements reveal an increase in the number of particles undergoing reversible fluorescent on–off transitions in the volume under observation with increasing excitation power; this effect is found to be more pronounced in the case of core‐only QDs than for core–shell QDs.  相似文献   

20.
The first photoactivated doped quantum dot vector for metal‐ion release has been developed. A facile method for doping copper(I) cations within ZnS quantum dot shells was achieved through the use of metal‐dithiocarbamates, with Cu+ ions elucidated by X‐ray photoelectron spectroscopy. Photoexcitation of the quantum dots has been shown to release Cu+ ions, which was employed as an effective catalyst for the Huisgen [3+2] cycloaddition reaction. The relationship between the extent of doping, catalytic activity, and the fluorescence quenching was also explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号