首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(?)‐Himeradine A is a complex lycopodium alkaloid with seven rings and ten stereogenic centers that shows anticancer activity against lymphoma L1210 cells. A total synthesis has been developed that builds off prior work on (+)‐fastigiatine. A 2,4,6‐trisubstitited piperidine ring forms the core of the quinolizidine segment, and was prepared by diastereoselective reduction of a pyridine and classic resolution of an intermediate. The remaining secondary amine was introduced with a catalyst‐controlled Overman rearrangement. The piperidine segment was coupled in a B‐alkyl Suzuki reaction with a bicyclic bromoenone, which was a key intermediate for the synthesis of (+)‐fastigiatine. The final transformation featured a transannular Mannich reaction and cyclization to complete the quinolizidine. Five bonds and four new rings were generated in this one‐pot procedure. (?)‐Himeradine A was prepared in 17 steps in the longest linear sequence.  相似文献   

2.
An efficient and simple method for the synthesis of various [1, 2, 3]triazolo[1, 5‐a]pyridines has been established. The method involves a copper(II)‐catalyzed oxidative N?N bond formation that uses atmospheric oxygen as the terminal oxidant following hydrazonation in one pot. The use of ethyl acetate as the solvent dramatically promotes the oxidative N?N bond‐formation reaction and enables the application of oxidative cyclization in the efficient one‐pot reaction. A mechanism for the reaction was proposed on the basis of the results of a spectroscopic study.  相似文献   

3.
An intermolecular two C? C bond formation procedure for the synthesis of carbocycles mediated by hypervalent iodine(III) reagents was developed. This metal free protocol provided a new approach for the synthesis of useful substituted 1‐amino‐2‐naphthoic acid derivatives via benzannulation reactions. Various N‐unsubstituted and N‐alkyl substituted aromatic enamines with terminal alkynes and non‐terminal alkynes can be converted into corresponding 1‐amino‐2‐naphthoic acid derivatives under mild reaction conditions. When meta‐substituted phenyl enamines were employed in the reaction, two cyclization paths were detected in the reaction and ortho‐cyclization products were the only or major products. Good functional group tolerance, readily available material and high atom utilization efficiency make this method a potential procedure which may find broad application in organic synthesis.  相似文献   

4.
Reactions of amidines with malononitrile dimer in DMF and catalyzed with piperidine are reported. The reaction occurred via amination process followed by cyclization to give racemic 6‐aminopyrimidine compounds. The reaction mechanism was discussed. The structure of products was elucidated by mass spectrometry, IR and NMR spectra together with elemental analyses.  相似文献   

5.
A new route for the regioselective synthesis of 2,3,4,5‐tetrahydro‐1H‐pyrido[4,3‐b]indole derivatives was developed based on cyclization of 3‐chlorophenylimine‐N‐alkyl‐4‐piperidones by “the complex bases” of NaNH2 or KNH2. The procedure was performed under variable reaction conditions in inert proton‐free solvents, such as THF, dioxane, 1,2‐dimethoxyethane, toluene, and xylene, at temperatures varying from 20°C to boiling point of the solvent used. Toxic arylhydrazine intermediates occurring in the classical Fischer indole synthesis are avoided.  相似文献   

6.
The effects of simple alkyl alcohols on the radical polymerization of N‐isopropylacrylamide in toluene at low temperatures were investigated. We succeeded in the induction of syndiotactic specificity and the acceleration of polymerization reactions at the same time by adding simple alkyl alcohols such as 3‐methyl‐3‐pentanol (3Me3PenOH) to N‐isopropylacrylamide polymerizations. The dyad syndiotacticity increased with a decrease in the temperature and an increase in the bulkiness of the added alcohol and reached up to 71% at ?60 °C in the presence of 3Me3PenOH. With the assistance of NMR analysis, it was revealed that the alcohol compounds played dual roles in this polymerization system; an alcohol compound coordinating to the N? H proton induced syndiotactic specificity, and that hydrogen‐bonded to the C?O oxygen accelerated the polymerization reaction. The effect of syndiotacticity on the properties of poly(N‐isopropylacrylamide)s was also examined in some detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4450–4460, 2006  相似文献   

7.
An organophotoredox catalyzed efficient and robust approach for the synthesis of highly important 3‐alkyl substituted chroman‐4‐one scaffold is developed using visible light induced radical cascade cyclization strategy. The reaction is initiated through the generation of alkyl radicals from N‐(acyloxy)phthalimides under photoredox conditions, which subsequently undergo intermolecular cascade radical cyclization on 2‐(allyloxy)arylaldehydes to afford chroman‐4‐one scaffolds. The presented strategy is attractive with regard to mild reaction conditions, operational simplicity, high functional group tolerance and broad substrate scope.  相似文献   

8.
Bisindoles (BIMs) were modulated as powerful N,N′ donor ligands for the copper‐catalyzed Sonogashira reaction. Ligand screening experiments on 11 BIM compounds found that 3,3′‐(4‐chlorophenyl)methylenebis(1‐methyl‐1H‐indole) (10%) efficiently accelerated CuCl (5%)‐catalyzed cross‐coupling of aryl iodides with terminal alkynes. A wide range of substituted aryl iodides and/or alkyl‐ and aryl‐substituted terminal alkynes were examined, leading to the corresponding coupling products with yields up to 99%. An efficient and scalable protocol for the synthesis of BIM ligands on a gram scale, with extremely low catalyst loading of o‐ClC6H4NH3+Cl?, was also developed with a reaction time of 20 min with yields up to 93%. This novel N,N′ ligand was air‐stable, easily available and highly modulated with low copper loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The reaction of benzynes with N‐heteroaromatics including quinolines, isoquinolines, and pyridines and various terminal alkynes or ketones with an α‐hydrogen in the presence of KF and 18‐crown‐6 in THF at room temperature for 8 h gave various N‐arylated 1,2‐dihydroheteroaromatics in good to moderate yields. Some of these product structures are found in various naturally occurring and biologically active heterocyclic compounds. The reaction involves an unusual multiple construction of new C? C, C? N, and C? H bonds and the cleavage of a C? H bond in one pot. It is likely that the three‐component coupling proceeds through the nucleophilic addition of quinoline to benzyne, which generates a zwitterionic species. The latter then attracts a proton from terminal alkyne (or ketone) to generate an N‐arylated quinolinium cation and an acetylide anion. Further reaction of these two ions provides the final substituted 1,2‐dihydroquinolines. In the reaction, the terminal alkyne acts first as a proton donor and then as a nucleophile. The application of a three‐component coupling reaction product, 1,2‐dihydro‐2‐pyridinyl alkyne in a stereospecific [4+2] Diels–Alder cycloaddition reaction with N‐phenyl maleimide to give an isoquinuclidine derivative, an important core present in various natural products, is demonstrated.  相似文献   

10.
The synthesis of (±)‐lasubine II has been achieved through a three‐component allylation capitalizing on the unique properties of N‐methoxyamines. This reaction enabled the installation of all the carbon atoms of lasubine II in a single operation. The N‐methoxy group was efficiently used for the subsequent nitrone formation. A single‐step cyclization of isoxazolidines or N‐methoxyamines to form functionalized piperidine rings was also developed.  相似文献   

11.
[Structure: see text] Thermal treatment of 1,6-fullerenynes bearing an alkyl group on the terminal carbon of the alkyne moiety leads quantitatively to new allenes through a reaction mechanism involving an intramolecular ene process. This reaction outcome is in contrast to that recently found for free terminal alkynes which form cyclobutene derivatives through a [2+2] cyclization mechanism.  相似文献   

12.
N‐carbamoyl nitrones represent an important class of reagents for the synthesis of a variety of natural and biologically active compounds. These compounds are generally converted into valuable 4‐isoxazolines upon cyclization reaction with dipolarophiles. However, these types of N‐protected nitrones are highly unstable, which limits their synthesis, storage and practical use, enforcing alternative lengthy or elaborated synthetic routes. In this work, a 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO)‐mediated formal “dehydrogenation” of N‐protected benzyl‐, allyl‐ and alkyl‐substituted hydroxylamines followed by in situ trapping of the generated unstable nitrones into N‐carbamoyl 4‐isoxazolines is presented. A plausible mechanism is also proposed, in which the dipolarophile shows an important assistant role in the generation of the active nitrone intermediate. This simple protocol avoids the problematic isolation of N‐carbamoyl protected nitrones, providing new synthetic possibilities in isoxazoline chemistry.  相似文献   

13.
The reaction of arylboronic acids with 1,6‐enynes that contain an allylic ether moiety is catalyzed by a rhodium(I) complex to produce cyclopentanes with a tetrasubstituted exo olefin and a pendant vinyl group. The reaction is initiated by the regioselective addition of an arylrhodium(I) species to the carbon–carbon triple bond of the 1,6‐enyne. The resulting alkenylrhodium(I) compound subsequently undergoes intramolecular carborhodation of the allylic double bond in a 5‐exo‐trig mode. β Elimination of the methoxy group affords the cyclization product and the catalytically active methoxorhodium(I) species. The use of alkyl Grignard reagents instead of arylboronic acids as organometallic nucleophiles was also examined.  相似文献   

14.
A new and efficient synthesis of 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives by a one‐pot three‐component reaction between primary amine, dialkyl acetylenedicarboxylate, and itaconic anhydride (=3,4‐dihydro‐3‐methylidenefuran‐2,5‐dione) is reported. The reaction was performed without catalyst and under solvent‐free conditions with excellent yields. Notably, the ready availability of the starting materials, and the high level of practicability of the reaction and workup make this approach an attractive complementary method to access to unknown 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of domino Michael addition? cyclization reaction is proposed (Scheme 2).  相似文献   

15.
A straightforward synthetic method for the construction of benzofuro[2,3‐b]pyrrol‐2‐ones by a novel domino reaction through a radical addition/[3,3]‐sigmatropic rearrangement/cyclization/lactamization cascade has been developed. The domino reaction of O‐phenyl‐conjugated oxime ether with an alkyl radical allows the construction of two heterocycles with three stereogenic centers as a result of the formation of two C?C bonds, a C?O bond, and a C?N bond in a single operation, leading to pyrrolidine‐fused dihydrobenzofurans, which are not easily accessible by existing synthetic methods. Furthermore, asymmetric synthesis of benzofuro[2,3‐b]pyrrol‐2‐one derivatives through a diastereoselective radical addition reaction to a chiral oxime ether was also developed.  相似文献   

16.
In this paper, a bimolecular‐cyclization reaction between two different bis(allene)s with at least one heteroatom as the tether under the catalysis of trans‐[RhCl(CO)(PPh3)2] is described. This protocol provides an efficient entry to different heterocyclic 18,19‐norsteroid‐like scaffolds. The tricyclic product was formed highly selectively from the cyclization reaction of bis(2,3‐butadienyl)sulfide with dimethyl 2‐bis(2′,3′‐butadienyl)malonate, which sheds light on the mechanism involving the metalla‐[4.3.0]‐bicyclic intermediate formed by the cyclometallation of the terminal and the internal C=C bonds of each of the two allene moieties in 2‐bis(2′,3′‐butadienyl)malonate.  相似文献   

17.
An efficient and simple route for the preparation of 2‐oxopyridine‐fused 1,3‐diazaheterocyclic compounds via a three component reaction is described. It involves the reaction between alkylenediamines 1 , 1,1‐bis(methylsulfanyl)‐2‐nitroethene, and alkyl prop‐2‐ynoates 2 in refluxing THF (Table). The structures were corroborated by spectroscopic (IR, 1H‐ and 13C‐NMR, and EI‐MS) and elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme).  相似文献   

18.
Well‐defined and air‐stable PEPPSI (Pyridine Enhanced Precatalyst Preparation Stabilization and Initiation) themed palladium bis‐N‐heterocyclic carbene complexes have been developed for the domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with a variety of terminal alkynes and C‐H bond arylation of benzothiazole with aryl iodides. The PEPPSI themed palladium complexes, 2a and 2b were synthesized in good yields from the reaction of corresponding imidazolium salts with PdCl2 and K2CO3 in pyridine. The new air‐stable palladium‐NHC complexes were characterized by NMR spectroscopy, X‐ray crystallography, elemental analysis, and mass spectroscopy studies. The PEPPSI themed palladium(II) bis‐N‐heterocyclic carbene complexes 2a and 2b exhibited excellent catalytic activities for domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with terminal alkynes yielding benzofuran derivatives. In addition, the palladium complexes, 2a and 2b successfully catalyzed the direct C‐H bond arylation of benzothiazole with aryl iodides as coupling partners in presence of CuI as co‐catalyst.  相似文献   

19.
A cooperative methoxy transfer between orthosilicate esters and organotin oxides was developed for the synthesis of various N ‐alkyl and N ‐aryl carbamates from carbon dioxide in up to 97% isolated yield. The reaction is highly selective and N ‐alkylated amines are not observed. Density functional theory calculations of the reaction were performed and, together with NMR observations, a plausible mechanism featuring the catalytic regeneration of dialkyltin dialkoxide is proposed.  相似文献   

20.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one‐pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N‐masking group of the N‐terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o‐aminoanilide. The ready availability of Fmoc‐Cys(Trt)‐OH, which is routinely used in Fmoc solid‐phase peptide synthesis, where the Fmoc group is pre‐installed on cysteine residue, minimizes additional steps required for the temporary protection of the N‐terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号