首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fused-silica capillary that is wall-modified via chemically bonding a sulfonated polymer to the capillary wall has a uniform negative charge density on its surface and produces an electroosmotic flow (EOF) greater than 4 x 10(-4) cm2 V(-1) s(-1) The EOF is nearly independent of buffer pH over the pH range of 2 to 10 and is lower than the EOF obtained for the bare fused-silica capillary at the more basic pH but is higher at the more acidic buffer pH. Optimization of buffer pH can be based on analyte pKa values to improve the overall quality of the capillary zone electrophoresis (CZE) separation of complex mixtures of weak acid and base analytes. Because of the high EOF in an acidic buffer, the capillary is useful for the separation of weak organic bases which are in their cation forms in the acidic buffer. EOF for the sulfonic acid bonded phase capillary can be adjusted via buffer additives such as organic solvent, tetraalkylammonium salts, multivalent cations and alkylsulfonic acids. The advantages of utilizing buffer pH and the EOF buffer modifiers to enhance migration time, selectivity, and resolution in CZE separations with this capillary are illustrated using a series of test analyte mixtures of inorganic anions, carboxylic acids, alkylsulfonic acids, benzenesulfonic acids, sulfas, pyridines, anilines or small-chain peptides.  相似文献   

2.
Xu L  Sun Y 《Journal of chromatography. A》2008,1183(1-2):129-134
The use of a phenylalanine (Phe) functionalized tentacle-type polymer coated capillary column for protein separation by open tubular capillary electrochromatography (OTCEC) was demonstrated in this work. The tentacle-type stationary phase was prepared from silanized fused-silica capillaries of 50 microm I.D. by glycidyl methacrylate graft polymerization and subsequent Phe functionalization. Due to the amphoteric functional groups of the Phe bonded on the tentacle-type polymer stationary phase, protein separation in the prepared column can be performed under both cathodic and anodic electroosmotic flow (EOF) by varying the pH values of the mobile phase. Model proteins including ribonuclease A (RNase A), myoglobin, transferrin, insulin were baseline separated under cathodic EOF with a mobile phase of pH 8.8. Comparison between the separation result of the four proteins under conditions of OTCEC and capillary zone electrophoresis indicates that the migration behavior of the four proteins in the prepared column was the result of the interplay of chromatographic retention and electrophoretic migration. Besides, three basic proteins including RNase A, cytochrome c (Cyt-c) and lysozyme (Lys) were fully resolved under anodic EOF with an acidic running buffer (pH 2.5). The elution order was the same as the isoelectric point values of the proteins (RNase A相似文献   

3.
A linear polymer-coated capillary was prepared by in-capillary copolymerization of N-tert-butylacrylamide (TBAAm) with a charged monomer, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), after the capillary pretreatment with a bifunctional reagent. The coated capillaries were applied in capillary electrochromatographic (CEC) separation of small neutral compounds. Hydrophobic groups in the linear polymer, which were immobilized onto the capillary surface, functioned as the stationary phase in reversed-phase CEC separation, and charged groups in the linear polymer generated electroosmotic flow (EOF) along the column. The coated capillaries were prepared by a simple procedure. Moreover, the reproducibility with respect to EOF rate and migration times of the solutes was excellent. The results for CEC separation of small molecules using the linear polymer-coated capillaries are presented.  相似文献   

4.
Fu H  Jin W  Xiao H  Huang H  Zou H 《Electrophoresis》2003,24(12-13):2084-2091
Separation of small peptides by hydrophilic interaction capillary electrochromatography (HI-CEC) has been investigated. The negative surface charge of a hydrophilic, strong-cation-exchange stationary phase (PolySULFOETHYL A) provided a substantial cathodic electroosmotic flow (EOF). The influence of acetonitrile content, ionic strength, mobile phase pH as well as applied voltage on the migration of the peptides was studied. Possible retention mechanisms of the peptides in HI-CEC were discussed. It was found that hydrophilic interaction between the solutes and the stationary phase played a major role in this system, especially when mobile phases with high acetonitrile content were used. However, an ion-exchange mechanism and electrophoretic mobility also affect the migration of the peptides in HI-CEC. Elution order and selectivity was proved to be different in HI-CEC and capillary zone electrophoresis (CZE), thus revealing the potential of HI-CEC as a complementary technique to CZE for the separation of peptides. Efficiency and selectivity of HI-CEC for the separation of peptides were demonstrated by baseline separating nine peptides in 6 min.  相似文献   

5.
Ghosal S 《Electrophoresis》2004,25(2):214-228
Electroosmotic flow (EOF) usually accompanies electrophoretic migration of charged species in capillary electrophoresis unless special precautions are taken to suppress it. The presence of the EOF provides certain advantages in separations. It is an alternative to mechanical pumps, which are inefficient and difficult to build at small scales, for transporting reagents and analytes on microfluidic chips. The downside is that any imperfection that distorts the EOF profile reduces the separation efficiency. In this paper, the basic facts about EOF are reviewed from the perspective of fluid mechanics and its effect on separations in free solution capillary zone electrophoresis is discussed in the light of recent advances.  相似文献   

6.
The aim of this study was to setup a method for detection and quantification of monosaccharide components in technical galactoglucomannas (T-GGM) from spruce wood using capillary zone electrophoresis (CZE). CZE technique was optimised regarding borate buffer concentrations, EOF modifier application, and system pH. Aqueous solution of T-GGM was chemically hydrolysed by sulphuric acid, in an autoclave. In this way obtained monosaccharides were derivatized with 4-amino benzoic acid ethyl ester via reductive amination using sodium cyanoborohydride. The results of the optimisation procedure showed that the borate buffers at lowest concentrations (100 and 200 mM) with acetonitrile addition as EOF modifier gave the optimal measurement results, as it showed sufficient separation at relatively short migration times. The amounts of single monosaccharide components in the T-GGM samples obtained by the optimised CZE procedure were practically the same in comparison to the results of the well established HPLC-anion exchange chromatography. On the basis of this research, it was concluded that the capillary zone electrophoresis is an efficient analytical procedure for the characterisation of galactoglucomannans derived from softwoods.  相似文献   

7.
Nonaqueous capillary electrophoresis using a titania-coated capillary   总被引:1,自引:0,他引:1  
In this work, an ordered mesoporous titania film was introduced to coat a capillary by means of the sol-gel technique. Its electroosmotic flow (EOF) property was investigated in a variety of nonaqueous media (methanol, formamide and N,N'-dimethylformamide and mixtures of methanol and acetonitrile). The titania-coated capillary exhibited a distinctive EOF behavior, the direction and magnitude of which were strongly dependent on various parameters such as the solvent composition, apparent pH (pH*) and the electrolytes. The nonaqueous capillary electrophoresis separation of several alkaloids was investigated in the positively charged titania-coated capillary. Comparison of separation between coated and uncoated capillaries under optimal nonaqueous conditions was also carried out.  相似文献   

8.
Kuo IT  Chiu TC  Chang HT 《Electrophoresis》2003,24(19-20):3339-3347
We describe the separation of dsDNA by capillary electrophoresis in the presence of electroosmotic flow (EOF) using poly(ethylene oxide) (PEO). Using 1.0% PEO, the separation of DNA fragments with sizes ranging from 51 bp to 23 kbp has been achieved in less than 12 min, which is better than conventional methods (in the absence of EOF) in terms of speed and resolution. In order to concentrate and separate the DNA sample, gradient changes in the concentrations of PEO and ethidium bromide (EtBr) have been conducted. Different concentrations of PEO solutions are injected to the polyethylene tubes by pressure, where they enter the capillary by EOF. Because the large DNA fragments migrate faster towards the cathode end under counterflow conditions, the introduction sequence is from low to high concentrations of PEO solutions after sample injection. Using the gradient CE approach, the separations of the DNA sample injected at 30 cm height for times up to 120 s have been demonstrated. The linearity between injection time and peak height shows that the DNA fragments stacked during migration from the sample zone to PEO. We found that stacking efficiency is greater when the analysis was performed by simultaneously changing the PEO and EtBr concentration, compared to individual changes in PEO concentration.  相似文献   

9.
A novel pH‐responsive coating technique was developed and applied to CE successfully in this paper. The coating was formed by bonding mixed opposite charge poly(acrylic acid) and poly(2‐vinylpyridine) randomly onto the inner wall of a silica capillary. The coating processes were first characterized by ellipsometry and atomic force microscopy at macroscale and microscale, respectively. Measurements of EOF were implemented to confirm the coating. Direction and velocity of EOF became controllable from negative to positive, showing a perfect sigmoidal curve as the coating net charges alternated by the pH of BGE. The control of the EOF makes it possible to analyze different kinds of small molecules, peptides, and proteins successfully in the same capillary. Results showed that the stability and reproducibility for separations of fluoroquinolone standards were satisfactory for more than a hundred separations. A series of basic and acidic protein standards were separated with admirable efficiency and minimal adsorption using both polarities. The separation of tryptic BSA digest showed that the prepared capillary has immense potential in analyzing a single sample with both acidic and basic separations, which achieved the expectation in proteomics study by CE‐MS.  相似文献   

10.
A room-temperature ionic liquid (IL), 1-ethyl-3-methyl-imidazolium tetrafluoroborate (1E-3MI-TFB), used for the coating of a silica capillary enables one to reduce or invert the electroosmotic flow (EOF) in capillary zone electrophoresis. Excellent separations of amino acids and ary lalkanoic acids were obtained. Such separations could not be obtained in a naked capillary in the presence of the cationic surfactants cetyltrimethylammonium bromide (CTAB) or polycationic polymer hexadimethrine bromide (HDB). The results indicate that 1E-3MI-TFB not only modulates the EOF but also acts as a discriminator. Further experiments indicate that the interaction between hydrogen at C-2 carbon of IL and acid drugs plays an important role in the separation. The text was submitted by the authors in English.  相似文献   

11.
The separation mechanism in capillary electrochromatography (CEC) is a hybrid differential migration process, which entails the features of both high-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE), i.e., chromatographic retention and electrophoretic migration. The focus of this paper is on the use of electrokinetic data, such as current, electroosmotic flow (EOF) and column efficiency measurements, that are readily available, for an improved understanding of CEC separations. A framework is presented here for the use of this data for evaluation of a variety of performance parameters including, conductivity ratio, interstitial EOF mobility, porosity, and zeta potential. This framework is applied for characterization of two monolithic columns with different chemistry that were manufactured in-house. The above-mentioned performance parameters were calculated for the two columns and it is found that the poly(VBC-EGDMA-SWNT) monolithic column with the GPTMS-PEI coating offers a significantly improved flow distribution in comparison to the poly(VBC-EGDMA) monolithic column. This observation is confirmed by performing separation of peptides on the two columns and height equivalent of a theoretical plate (HETP) measurements on the resulting peaks. It is shown that following our approach leads to an improved understanding of the separations achieved with the columns and to better column design.  相似文献   

12.
In the present paper, two new methods, sol-gel and chemical bonding methods, were proposed for preparation of sulfonated fused-silica capillaries. In the sol-gel method, a fused-silica capillary was coated with the sol solution obtained by hydrolysis of 3-mercaptopropyltrimethoxysilane (MPTS) and tetramethoxysilane, and followed by age; while in the chemical bonding method, a capillary was chemically bonded directly with MPTS. Then, both the resulting capillaries were oxidized with an aqueous solution of hydrogen peroxide solution (H2O2) (30%, m/m) to obtain the sulfonated capillaries. The electroosmotic flow (EOF) for the sulfonated capillaries was found to remain almost constant within the studied pH range, and greater than that of the uncoated capillary. However, the coating efficiency of the capillary prepared by chemical bonding method was higher than that by sol-gel method, by comparing their magnitude of the EOF, the degree of disguise of the silanol and reproducibility of preparation procedure. The effects of the electrolyte's concentration and the content of methanol (MeOH) on the EOF were also studied. Especially, the study of the apparent pH (pH*) on the EOF in a water-MeOH system was reported. Finally, capillary electrophoretic separation of seven organic acids was achieved within 6.5 min under optimal condition using the chemically bonded sulfonated capillary. Moreover, separation of four alkaloids on the sulfonated capillary was compared with that on uncoated capillary in different conditions. Ion-exchange mechanism was found to play a key role for separation of these four basic analytes on the sulfonated capillary.  相似文献   

13.
14.
Two electrically neutral analytes previously observed to be separated from the neutral marker in capillary zone electrophoresis (CZE) experiments [sulphanilamide (SAA) and sulphaguanidine (SGW)] have been examined to determine the basis for separation. The degree of separation increases markedly with buffer concentration and improves with increasing field strength. On the basis of the apparent electrophoretic mobilities in conventional CZE, migration times in a zero EOF environment were calculated for SAA, SGW and six other sulphonamides that were known to be ionized. These six markers were used to test the legitimacy of our predictions and to correct for small discrepancies between the predicted and observed migration times. It was concluded that SAA and SGW have negligible electrophoretic mobilities and that they are retained in the electrical double layer close to the capillary wall. A mechanism for adsorption is proposed and the generality of the phenomenon is discussed.  相似文献   

15.
Qin WH  Cao CX  Li S  Zhang W  Liu W 《Electrophoresis》2005,26(16):3113-3124
The paper advanced the theoretical procedures for quantitative design on selective stacking of zwitterions in full capillary sample matrix by a cathodic-direction moving reaction boundary (MRB) in capillary electrophoresis (CE) under control of electroosmotic flow (EOF). With the procedures, we conducted the theoretical computations on the selective stacking of two test analytes of L-histidine (His) and L-tryptophan (Trp) by the MRB created with 30 mM pH 3.0 formic acid-NaOH buffer and 2-80 mM sodium formate. The results revealed the following three predictions. At first, the MRB cannot stack His and Trp plugs if less than 12.5 mM sodium formate is used to form the MRB and prepare the sample matrix. Second, the MRB can stack His and/or Trp sample plugs completely if higher than 50 mM sodium formate is chosen to form the MRB. Third, the MRB can only focus His plug completely, but stack Trp plug partially if 20-50 mM sodium formate is used; this implied the complete MRB-induced selective stacking to His rather than Trp. All the three predictions were quantitatively proved by the experiments. With great dilution of sample matrix and control of EOF, controllable, simultaneous and MRB-induced selective stacking and separation of zwitterions were achieved. The theoretical results hold evident significances to the quantitative design of selective stacking conditions and the increase of detection sensitivity of zwitterions in CE. In addition, the control of EOF by cetyltrimethylammonium bromide (CTAB) can evidently improve the stacking efficiency to both His and Trp.  相似文献   

16.
A capillary zone electrophoresis (CZE)-potential gradient detection (PGD) method coupled with field-amplified sample injection was developed to determine alkali metal, alkaline-earth metal, nickel, lead and ammonium ions. The capillary surface was coated with dialkylimidazolium-based ionic liquid and thus the electroosmotic flow (EOF) of the capillary was reversed. The buffer composed of 7.5 mM lactic acid, 0.6 mM 18-crown-6, 12 mM alpha-cyclodextrin (alpha-CD); it was adjusted to pH 4.0 by 1-hexyl-3-methylimidazolium hydroxide. The 11 cations were baseline separated within 14 min with 5.1-18.9 x 10(4) plates (for 40-cm-long capillary) in separation efficiency, and the detection limits were in the range of 0.27-7.3 ng/ml. The method showed good reproducibility in terms of migration time with RSD < or = 0.90% for run-to-run and < or = 1.65 for day-to-day assessment.  相似文献   

17.
Yeung KK  Atwal KK  Zhang H 《The Analyst》2003,128(6):566-570
The use of surfactants as additives was demonstrated for the first time in capillary isoelectric focusing (CIEF) to dynamically modify the surfaces of bare fused silica capillaries. These surfactants were zwitterionic sulfobetaines: dodecyldimethyl (3-sulfopropyl) ammonium hydroxide (C12N3SO3), hexadecyldimethyl (3-sulfopropyl) ammonium hydroxide (C16N3SO3) and coco (amidopropyl)hydroxyldimethylsulfobetaine (Rewoteric AM CAS U). They were added directly to the protein-ampholyte mixture, and remained in the capillary during isoelectric focusing and mobilization. The C16N3SO3 and CAS U coatings were shown effective in CEF. Separation of seven IEF protein standards was obtained, with significantly improved resolution compared to that from an uncoated silica capillary. The effect of these surfactants on the electroosmotic flow (EOF) in CIEF was determined. CAS U was effective in suppressing the EOF at neutral and alkaline pH conditions, C16N3SO3 was effective in suppressing EOF at acidic and neutral pH conditions. C12N3SO3 however had little effect on the EOF. The pH gradients formed inside these surfactant coated capillaries were recta-linear at pH 6 to 9 (R2 approximately equal to 0.99). Reproducibility of migration time and peak area was determined. For all three coatings, the migration time standard deviations were less than 1.6 min, and the relative standard deviations of area were below 10%. The protein recovery in the CAS U-modified capillary was quantitative or near-quantitative for five of the seven proteins studied.  相似文献   

18.
Mori M  Tsue H  Tanaka S  Tanaka K  Haddad P 《Electrophoresis》2003,24(12-13):1944-1950
A new coated capillary has been introduced for capillary electrophoretic separation of anions by using a positively charged diazacrown ether with a 12-membered ring. A positive charge spread over the inner capillary surface led to a substantial anodic electroosmotic flow (EOF) over the range of migrating buffer of pH 2-11. Under the optimum conditions of 25 mM phosphate buffer at pH 7, the diazacrown-coated capillary showed a successful simultaneous separation of 7 inorganic anions and 13 aromatic anions (including positional isomers) in less than 15 min. The migration times of the sample anions and EOF marker for consecutive runs on a single column were highly reproducible, giving a relative standard deviation of 1%. Theoretical treatment of the migration behavior clearly demonstrated that ion association between the diazacrown and analyte anions is strongly dependent on the nature of the functional groups of anions (e.g., sulfonate groups > carboxyl groups) and the number of negative charges (e.g., trivalent anions > divalent anions > monovalent anions) on the analyte.  相似文献   

19.
When field-enhanced sample stacking was used in capillary zone electrophoresis (CZE) analysis of cations, the decrease of migration time and the reduction of separation window was observed with increase of sample plug length. A simple equation expressing the migration velocity in the stacking process was derived to explain the above phenomenon. From experiments and theoretical consideration, we confirmed that this effect was caused by the higher potential gradient and larger eletroosmotic flow (EOF) mobility at the sample plug than those at the supporting electrolyte. A mathematical model appropriate for the computer simulation of such a system was studied considering the experimental results, and it was concluded that electroosmotic velocity (v(eof)) should be introduced to the equation of continuity as a constant.  相似文献   

20.
In this work, a new copolymer synthesized in our laboratory is used as physically adsorbed coating for capillary electrophoresis (CE). The copolymer is composed of ethylpyrrolidine methacrylate (EPyM) and methylmethacrylate (MMA). The capillary coating is easily obtained by simply flushing into the tubing an EPyM/MMA solution. It is demonstrated that the composition of the EPyM/MMA copolymer together with the selection of the background electrolyte (BGE) and pH allow tailoring the direction and magnitude of the electroosmotic flow (EOF) in CE. It is also shown that the EOF obtained for the EPyM/MMA-coated capillaries was reproducible in all cases independently on pH or polymer composition. Thus, RSD values lower than 1.9% (n=5) for the same capillary and day were obtained for the migration time, while the repeatability interdays (n=5) was observed to provide RSD values lower than 0.5%. The stability of the coating procedure was also tested between capillaries (n=3) obtaining RSD values lower than 0.6%. It is demonstrated with several examples that the use of EPyM/MMA coatings in CE can drastically reduce the analysis time and/or to improve the resolution of the separations. It is shown that EPyM/MMA-coated capillaries allow the separation of basic proteins by reducing their adsorption onto the capillary wall. Also, EPyM/MMA-coated capillaries provide a faster separation of samples containing simultaneously positive and negative analytes. Moreover, it is demonstrated that the use of EPyM/MMA-coated capillaries can incorporate an additional chromatographic-like interaction with nucleosides that highly improves the separation of this group of solutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号