首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of carbon source and its concentration, inoculum size, yeast extract concentration, nitrogen source, pH of the fermentation medium, and fermentation temperature on β-glucosidase production by Kluyveromyces marxianus in shake-flask culture was investigated. These were the independent variables that directly regulated the specific growth and β-glucosidase production rate. The highest product yield, specific product yield, and productivity of β-glucosidase occurred in the medium (pH 5.5) inoculated with 10% (v/v) inoculum of the culture. Cellobiose (20 g/L) significantly improved β-glucosidase production measured as product yield (Y P/S ) and volumetric productivity (Q P ) followed by sucrose, lactose, and xylose. The highest levels of productivity (144 IU/[L·h]) of β-glucosidase occurred on cellobiose in the presence of CSL at 35°C and are significantly higher than the values reported by other researchers on almost all other organisms. The thermodynamics and kinetics of β-glucosidase production and its deactivation are also reported. The enzyme was substantially stable at 60°C and may find application in some industrial processes.  相似文献   

2.
An aquatic weed biomass, Eicchornia crassipes, present in abundance and leading to a threatening level of water pollution was used as substrate for cellulase and β-glucosidase production using wild-type strain Aspergillus niger RK3 that was isolated from decomposing substrate. Alkali treatment of the biomass (10%) resulted in a 60–66% increase in endoglucanase, exoglucanase, and β-glucosidase production by the A. niger RK3 strain in semi-solid-state fermentation. Similarly, the alkali-treated biomass led to a 45–54% increase in endo- and exoglucanase and a higher (98%) increase in β-glucosidase production by Trichoderma reesei MTCC164 under similar conditions. However, the cocultivation of A. niger RK3 and T. reesei MTCC164 at a ratio of 3:1 showed a 20–24% increase in endo- and exoglucanase activities and about a 13% increase in the β-glucosidase activity over the maximum enzymatic activities observed under single culture conditions. Multistep physical (ultraviolet) and chemical (N-methyl-N′-nitrosoguanidine, sodium azide, colchicine) mutagenesis of the A. niger RK3 strain resulted in a highly cellulolytic mutant, UNSC-442, having an increase of 136, 138, and 96% in endoglucanase, exoglucanase, and β-glucosidase, activity, respectively. The cocultivation of mutant UNSC-442 along with T. reesei MTCC164 (at a ratio of 3:1) showed a further 10–11% increase in endo- and exoglucanase activities and a 29% increase in β-glucosidase activity in semi-solid-state fermentation.  相似文献   

3.
The hydrolytic activity of fungal originated β-glucosidase is exploited in several biotechnological processes to increase the rate and extent of saccharification of several cellulosic materials by hydrolyzing the cellobiose which inhibits cellulases. In a previous presentation, we reported the screening and liquid fermentation with Aspergillus niger, strain C-6 for β-glucosidase production at shake flask cultures in a basal culture medium with mineral salts, corn syrup liquor, and different waste lignocellulosic materials as the sole carbon source obtaining the maximum enzymatic activity after 5–6 d of 8.5 IU/mL using native sugar cane bagasse. In this work we describe the evaluation of fermentation conditions: growth temperature, medium composition, and pH, also the agitation and aeration effects for β-glucosidase production under submerged culture using a culture media with corn syrup liquor (CSL) and native sugar cane bagasse pith as the sole carbon source in a laboratory fermenter. The maximum enzyme titer of 7.2 IU/mL was obtained within 3 d of fermentation. This indicates that β-glucosidase productivity by Aspergillus niger C-6 is function of culture conditions, principally temperature, pH, culture medium conditions, and the oxygen supply given in the bioreactor. Results obtained suggest that this strain is a potential microorganism that can reach a major level of enzyme production and also for enzyme characterization.  相似文献   

4.
The hydrolysis of cellulose to the water-soluble products cellobiose and glucose is achieved via synergistic action of cellulolytic proteins. The three types of enzymes involved in this process are endoglucanases, cellobiohydrolases, and β-glucosidases. One of the best fungal cellulase producers is Trichoderma reesei RUT C30. However, the amount of β-glucosidases secreted by this fungus is insufficient for effective cellulose conversion. We investigated the production of cellulases and β-glucosidases in shake-flask cultures by applying three pH-controlling strategies: (1) the pH of the production medium was adjusted to 5.8 after the addition of seed culture with no additional pH adjustment performed, (2) the pH was adjusted to 6.0 daily, and (3) the pH was maintained at 6.0 by the addition of Tris-maleate buffer to the growth medium. Different carbon sources—Solka Floc 200, glucose, lactose, and sorbitol—were added to standard Mandels nutrients. The lowest β-glucosidase activities were obtained when no pH adjustment was done regardless of the carbon source employed. Somewhat higher levels of β-glucosidase were measured in the culture filtrates when daily pH adjustment was carried out. The effect of buffering the culture medium on β-glucosidase liberation was most prominent when a carbon source inducing the production of other cellulases was applied.  相似文献   

5.
The use of purified xylan as a substrate for bioconversion into xylanases increases the cost of enzyme production. Consequently, there have been attempts to develop a bioprocess to produce such enzymes using different lignocellulosic residues. Filamentous fungi have been widely used to produce hydrolytic enzymes for industrial applications, including xylanases, whose levels in fungi are generally much higher than those in yeast and bacteria. Considering the industrial importance of xylanases, the present study evaluated the use of milled sugarcane bagasse, without any pretreatment, as a carbon source. Also, the effect of different nitrogen sources and the C∶N ratio on xylanase production by Aspergillus awamori were investigated, in experiments carried out in solid-state fermentation. High extracellular xylanolytic activity was observed on cultivation of A. awamori on milled sugarcane bagasse and organic nitrogen sources (45 IU/mL for endoxylanase and 3.5 IU/mL for β-xylosidase). Endoxylanase and β-xylosidase activities were higher when sodium nitrate was used as the nitrogen source, when compared with peptone, urea, and ammonium sulfate at the optimized C∶N ratio of 10∶1. The use of yeast extract as a supplement to the these nitrogen sources resulted in considerable improvementin the production of xylanases, showing the importance of this organic nitrogen source on A. awamori metabolism.  相似文献   

6.
A process of solid state fermentation (SSF) on tomato pomace was developed with the white-rot fungi Pleurotus ostreatus and Trametes versicolor, using sorghum stalks as support. Operative parameters (humidity, water activity, and size of substrate particles) guaranteeing a good colonization of tomato pomace by both fungi were defined and conditions for production at high titers of the industrially relevant enzymes laccase, xylanase and protease were identified. Significant laccase activity levels (up to 36 U g−1 dry matter) were achieved without any optimization of culture conditions, neither by nutrient addition nor by O2 enrichment. Furthermore, protease activity levels up to 34,000 U g−1 dry matter were achieved, being higher than those reported for the fungi typically considered as the best protease producers such as Aspergillus strains. Moreover, as one of the most significant results of this study, analysis of P. ostreatus tomato SSF samples by zymogram revealed two bands with laccase activity which had not been detected so far.  相似文献   

7.
The production of cellulolytic enzymes by the fungus Aspergillus phoenicis was investigated. Grape waste from the winemaking industry was chosen as the growth substrate among several agro-industrial byproducts. A 2 × 2 central composite design was performed, utilizing the amount of grape waste and peptone as independent variables. The fungus was cultivated in submerged fermentation at 30 °C and 120 rpm for 120 h, and the activities of total cellulases, endoglucanases, and β-glucosidases were measured. Total cellulases were positively influenced by the linear increase of peptone concentration and decrease at axial concentrations of grape waste and peptone. Maximum activity of endoglucanase was observed by a linear increase of both grape waste and peptone concentrations. Concentrations of grape waste between 5 and 15 g/L had a positive effect on the production of β-glucosidase; peptone had no significant effects. The optimum production of the three cellulolytic activities was observed at values near the central point. A. phoenicis has the potential for the production of cellulases utilizing grape waste as the growth substrate.  相似文献   

8.
The efficient saccharification of lignocellulosic materials requires the cooperative actions of different cellulase enzyme activities: exoglucanase, endoglucanase, β-glucosidase, and xylanase. Previous studies with the fungi strains Aureobasidium sp. CHTE-18, Penicillium sp. CH-TE-001, and Aspergillus terreus CH-TE-013, selected mainly because of their different cellulolytic and xylanolytic activities, have demonstrated the capacity of culture filtrates of cross-synergistic action in the saccharification of native sugarcane bagasse pith. In an attempt to improve the enzymatic hydrolysis of different cellulosic materials, we investigated a coculture fermentation with two of these strains to enhance the production of cellulases and xylanases. The 48-h batch experimental results showed that the mixed culture of Penicillium sp. CH-TE-001 and A. terreus CH-TE-013 produced culture filtrates with high protein content, cellulase (mainly β-glucosidase), and xylanase activities compared with the individual culture of each strain. The same culture conditions were used in a simple medium with mineral salts, corn syrup liquor, and sugarcane bagasse pith as the sole carbon source with moderate shaking at 29°C. Finally, we compared the effect of the cell-free culture filtrates obtained from the mixed and single fermentations on the saccharification of different kinds of cellulosic materials.  相似文献   

9.
A cellulase production process was developed by growing the fungi Trichoderma reesei and Aspergillus phoenicis on dairy manure. T. reesei produced a high total cellulase titer (1.7 filter paper units [FPU]/mL, filter paper activity) in medium containing 10 g/L of manure (dry basis [w/w]), 2 g/L KH2PO4, 2 mL/L of Tween-80, and 2mg/L of CoCl2. However, β-glucosidase activity in the T. reesei-enzyme system was very low. T. reesei was then cocultured with A. phoenicis to enhance the β-glucosidase level. The mixed culture resulted in a relatively high level of total cellulase (1.54 FPU/mL) and β-glucosidase (0.64 IU/mL). The ratio of β-glucosidase activity to filter paper activity was 0.41, suitable for hydrolyzing manure cellulose. The crude enzyme broth from the mixed culture was used for hydrolyzing the manure cellulose, and the produced glucose was significantly (p<0.01) higher than levels obtained by using the commercial enzyme or the enzyme broth of the pure culture T. reesei.  相似文献   

10.
Xylanase is produced by Penicillium canescens 10–10c from soya oil cake in static conditions using solid-state fermentation. The impact of several parameters such as the nature and the size of inoculum, bed-loading, and aeration is evaluated during the fermentation process. Mycelial inoculum gives more production than conidial inoculum. Increasing the quantity of inoculum enhances slightly xylanase production. Forced aeration induces more sporulation of strain and reduces xylanase production. However, forced moistened air improves the production compared to production obtained with forced dry air. In addition, increasing bed-loading reduces the specific xylanase production likely due to the incapacity of the Penicillium strain to grow deeply in the fermented soya oil cake mass. Thus, the best cultivation conditions involve mycelial inoculum form, a bed loading of 1-cm height and passive aeration. The maximum xylanase activity is obtained after 7 days of fermentation and attains 10,200 U/g of soya oil cake. These levels are higher than those presented in the literature and, therefore, show all the potentialities of this stock and this technique for the production of xylanase.  相似文献   

11.
Hydrolysis of cellulose byTrichoderma cellulases often results in a mixture of glucose, cellobiose, and low-mol-wt cellodextrins. Cellobiose is nonfermentable for most yeasts, and therefore it has to be hydrolyzed to glucose by β-glucosidase prior to ethanol fermentation. In the present study, the β-glucosidase production of onePenicillium and threeAspergillus strains, which were previously selected out of 24 strains, was investigated on steam pretreated willow. Both steam-pretreated willow and hemicellulose hydrolysate, released during steam explosion of willow, were used as carbon sources. Reference cultivation runs were performed using prehydrolyzed Solka Floc and glucose: The four strains were compared withTrichoderma reesei regarding sugar consumption and β-glucosidase production.Aspergillus niger andAspergillus phoenicis proved to be the best enzyme producers on hemicellulose hydrolysate. The maximum β-glucosidase activity, 4.60 IU/mL, was obtained whenA. phoenicis was cultivated on the mixture of hemicellulose hydrolysate and steam-pretreated willow. The maximum yield of enzyme activity, 502 IU/g total carbohydrate, was obtained whenAspergillus foetidus was cultivated on the hemicellulose hydrolysate.  相似文献   

12.
Xylanase production byPenicillium janthinellum using 10–100 mM of 2,2-dimethylsuccinate (DMS) buffer, in a range of pH 4.5-6.0 was studied. The enzyme activity was enhanced using oat xylan as the carbon source. Under these conditions a culture produced 1.14 Μmol/ min (11.4 U/mL or 84.4 U/mg) of Β-xylanase after 5 d of growth in a 10-mM buffer solution at pH 4.5. Protease was absent in the DMS buffer except when 100 mM phosphate buffer at pH 6.0 was used (4 U/mL). Β-Xylosidase was only found at a pH of 4.5 in all the buffer concentrations. At a 50 mM DMS buffer concentration at pH 4.5 Β- xylanases were induced by both oat and birch xylans, having a greater effect with oat spelt xylans. Electrophoretic analyses showed that the birchwood xylan induction exhibited different proteins profiles. No Β-xylosidase or Β- glucosidase was induced until d 5. The Β-xylanases were rapidly inactivated at 50‡C, however, birch xylanase appeared to be more stable than oat xylanase. Using oat xylan as an inductor, theΒ-xylosidase andΒ-glucosidase were 85 and 91 U/L, respectively, on d 7. The xylanase produced by induction from sugar cane bagasse hydrolyzate was used for pulp biobleaching. A 20% decrease on the Kappa value in Kraft pulp using the culture extract was obtained. These selective growth conditions led us to modulate the xylanase production for pulp delignification.  相似文献   

13.
Horticultural waste in wood chips form collected from a landscape company in Singapore was utilized as the substrate for the production of cellulase and hemicellulase under solid-state fermentation by Trichoderma reesei RUT-C30. The effects of substrate pretreatment methods, substrate particle size, incubation temperature and time, initial medium pH value, and moisture content on cellulase and hemicellulase production were investigated. Enzyme complex was obtained at the optimal conditions. This enzyme mixture contained FPase (15.0 U/g substrate dry matter, SDM), CMCase (90.5 U/g SDM), β-glucosidase (61.6 U/g SDM), xylanase (52.1 U/g SDM), and β-xylosidase (10.4 U/g SDM). The soluble protein concentration in the enzyme complex was 26.1 mg/g SDM. The potential of the crude enzyme complex produced was demonstrated by the hydrolysis of wood chips, wood dust, palm oil fiber, and waste newspaper. The performance of the crude enzyme complex was better than the commercial enzyme blend.  相似文献   

14.
Two β-glucosidase/xylosidase genes, Rubg3A and Rubg3B, were cloned from yak rumen uncultured microorganisms by metagenome method and function-based screening. Recombinant RuBG3A and RuBG3B purified from Escherichia coli were characterized for enzymatic properties, and they exhibited activity against 4-nitrophenyl-β-d-glucopyranoside and 4-nitrophenyl-β-d-xylopyranoside, suggesting bifunctional β-glucosidase/xylosidase activity. Chromatography analysis showed that they could effectively hydrolyze cellooligosaccharide substrates, indicating the facilitation in saccharification of cellulose. RuBG3A and RuBG3B can also increase the reducing sugar released in xylan hydrolysis to 218% and 169%, respectively, through synergism with xylanase, suggesting their application in hemicellulose saccharification. Molecular modeling and substrate docking showed that there should be one active center responsible for the bifunctional activity in each enzyme, since the active site pocket is substantially wide to allow the entry of both β-glucosidic or β-xylosidic substrates, which elucidated the structure–function relationship in substrate specificities. Therefore, the enzymatic properties, the participation in hydrolysis of cellooligosaccharides, and the synergism with xylanase make RuBG3A and RuBG3B very interesting candidates for saccharification of both cellulose and hemicellulose.  相似文献   

15.
Because of the high temperature applied in the steam pretreatment of lignocellulosic materials, different types of inhibiting degradation products of saccharides and lignin, such as acetic acid and furfural, are formed. The main objective of the present study was to examine the effect of acetic acid and furfural on the cellulase production of a filamentous fungus Trichoderma reesei RUT C30, which is known to be one of the best cellulase-producing strains. Mandels’s mineral medium, supplemented with steam-pretreated willow as the carbon source at a concentration corresponding to 10 g/L of carbohydrate, was used. Four different concentration levels of acetic acid (0–3.0 g/L) and furfural (0–1.2 g/L) were applied alone as well as in certain combinations. Two enzyme activities, cellulase and β-glucosidase, were measured. The highest cellulase activity obtained after a 7-d incubation was 1.55 FPU/mL with 1.0 g/L of acetic acid and 0.8 g/L of furfural added to the medium. This was 17% higher than that obtained without acetic acid and furfural. Furthermore, the results showed that acetic acid alone did not influence the cellulase activity even at the highest concentration. However, β-glucosidase activity was increased with increasing acetic acid concentration. Furfural proved to be an inhibiting agent causing a significant decrease in both cellulase and β-glucosidase production.  相似文献   

16.
Four promising woody crops (Populusmaximowiczii x nigra (NE388), P.trichocarpa x deltoides (Nll), P.tremuloides, and SweetgumLiquidambar styraciflua) were pretreated by dilute sulfuric acid and evaluated in the simultaneous saccharification and fermentation (SSF) process for ethanol production. The yeastSaccharomyces cerevisiae was used in the fermentations alone, and in mixed cultures with β -glucosidase producingBrettanomyces dausenii. Commercial Genencor 150L cellulase enyme was either employed alone or supplemented with β- glucosidase. All SSFs were run at 37 …C for 8 d and compared to saccharifications at 45…C under the same enzyme loadings.S. cerevisiae alone achieved the highest ethanol yields and rates of hydrolysis at the higher enzyme loadings, whereas the mixed culture performed better at the lower enzyme loadings without β -glucosidase supplementation. The best overall rates of fermentation (3 d) and final theoretical ethanol yields (86–90%) were achieved with P.maximowiczii x nigra (NE388) and SweetgumLiquidambar styraciflua, followed by P.tremuloides and P.trichocarpa xdeltoides (N1l) with slightly slower rates and lower yields. Although there were some differences in SSF performance, all these pretreated woody crops show promise as substrates for ethanol production.  相似文献   

17.
The aim of this work was to evaluate the biochemical features of the white-rot fungi Pycnoporus sanguineus cellulolytic complex and its utilization to sugarcane bagasse hydrolysis. When cultivated under submerged fermentation using corn cobs as carbon source, P. sanguineus produced high FPase, endoglucanase, β-glucosidase, xylanase, mannanase, α-galactosidase, α-arabinofuranosidase, and polygalacturonase activities. Cellulase activities were characterized in relation to pH and temperature. β-Glucosidase and FPase activities were higher at 55 °C, pH 4.5, and endoglucanase activity was higher at 60 °C, in a pH range of 3.5–4.0. All cellulase activities were highly stable at 40 and 50 °C through 48 h of pre-incubation. Crude enzymatic extract from P. sanguineus was applied in a saccharification experiment using acid-treated and alkali-treated sugarcane bagasse as substrate, and the hydrolysis yields were compared to that obtained by a commercial cellulase preparation. Reducing sugar yields of 60.4% and 64.0% were reached when alkali-treated bagasse was hydrolyzed by P. sanguineus extract and commercial cellulase, respectively. Considering the glucose production, it was observed that P. sanguineus extract and commercial cellulase ensured yields of 22.6% and 36.5%, respectively. The saccharification of acid-treated bagasse was lower than that of alkali-treated bagasse regardless of the cellulolytic extract. The present work showed that P. sanguineus has a great potential as an enzyme producer for biomass saccharification.  相似文献   

18.
The Pol6 mutant of Penicillium occitanis fungus is of great biotechnological interest since it possesses a high capacity of cellulases and β-glucosidase production with high cellulose degradation efficiency (Jain et al., Enzyme Microb Technol, 12:691–696, 1990; Hadj-Taieb et al., Appl Microbiol Biotechnol, 37:197–201, 1992; Ellouz Chaabouni et al., Enzyme Microb Technol, 16:538–542, 1994; Ellouz Chaabouni et al., Appl Microbiol Biotechnol, 43:267–269, 1995). In this work, two forms of β-glucosidase (β-glu 1 and β-glu 2) were purified from the culture supernatant of the Pol6 strain by gel filtration, ion exchange chromatography, and preparative anionic native electrophoresis. These enzymes were eluted as two distinct species from the diethylamino ethanol Sepharose CL6B and anionic native electrophoresis. However, both behaved identically on sodium dodecyl sulfate polyacrylamide gel electrophoresis (MW, 98 kDa), shared the same amino acid composition, carbohydrate content (8%), and kinetic properties. Moreover, they strongly cross-reacted immunologically. They were active on cellobiose and pNPG with Km values of 1.43 and 0.37 mM, respectively. β-glu 1 and β-glu 2 were competitively inhibited by 1 mM of glucose and 0.03 mM of δ-gluconolactone. They were also significantly inhibited by Hg2+ and Cu2 at 2 mM. The addition of purified enzymes to the poor β-glucosidase crude extract of Trichoderma reesei increased its hydrolytic efficiency on H3P04 swollen cellulose but had no effect with P. occitanis crude extract. Besides their hydrolytic activities, β-glu 1 and β-glu 2 were endowed with trans-glycosidase activity at high concentration of glucose.  相似文献   

19.
Aspergillus niger KKS, isolated from a farmland near Suwon, was immobilized on Celite and polyurethane foams. Enzyme activities produced by the immobilized cell system in a bubble column were higher than that of shake-flask culture. The enzyme productivities were twice as high. β-Glucosidase, β-xylosidase, and xylanase activities obtained in a bubble column were significant when the ground rice straw was used as a substrate.  相似文献   

20.
Ethanol production was studied in simultaneous saccharification and fermentation (SSF) of steam-pretreated spruce at 42°C, using a thermotolerant yeast. Three yeast strains of Kluyveromyces marxianus were compared in test fermentations. SSF experiments were performed with the best of these on 5% (w/w) of substrate at a cellulase loading of 37 filter paper units/g of cellulose, and a β-glucosidase loading of 38 IU/gof cellulose. The detoxification of the substrate and the lack of pH control in the experiments increased the final ethanol concentration. The final ethanol yield was 15% lower compared to SSF with Saccharomyces cerevisiae at 37°C, owing to the cessation of ethanol fermentation after the first 10 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号